

23 a 27 de Novembro de 2020

Desenvolvimento de uma planilha eletrônica para calibração de manômetros: uma forma simplificada de mensurar a incerteza da medição

<u>D. C. R. Velasco¹*</u>; J. A. T. LINHARES JÚNIOR¹, E. Caetano², F. P. D. LOPES¹

¹Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Laboratório de Materiais Avançados;

²Instituto Federal Fluminense (IFFluminense), Automação Industrial

*davidc.r.v2014@gmail.com

Resumo

Ao utilizar um instrumento é necessário conhecer da incerteza da medição realizada, sendo esta uma importante variável para a qualidade e segurança de um processo. Neste sentido, este trabalho desenvolve uma ferramenta que visa permitir mensurar a incerteza de medição de um instrumento, bem como facilitar um possível processo de calibração. Contudo, uma vez que existem diferenças de acordo com o instrumento a ser avaliado, foi necessário realizar um recorte, sendo a planilha desenvolvida neste trabalho específica para manômetros analógicos. A metodologia deste trabalho é baseada no método ISO GUM, sendo a planilha desenvolvida por meio do *software* Microsoft Excel. A planilha desenvolvida atendeu os requisitos propostos, sendo uma forma simplificada de calcular a incerteza de um manômetro. Percebeu-se também que a planilha contém potencial didático, sendo não só uma forma de conferir os resultados, mas também de realizar práticas de calibração de instrumentos de maneira mais rápida e assertiva.

Palavras-chave: Calibração, incerteza da medição, manômetros, planilha eletrônica, qualidade.

1. Introdução

Como todo equipamento e instrumentos, as ferramentas utilizadas para realizar medições também possuem determinado tempo de vida útil. Assim, a calibração de instrumentos é fundamental para assegurar a confiabilidade da medição, bem como a qualidade dos produtos e processos associados a mesma^[1-2].

Diante deste cenário, torna-se necessário a determinação das incertezas envolvidas no procedimento. Esta necessidade passa por evitar a obtenção de dados que não expressem a verdade, podendo gerar uma série de consequências como: prejuízos econômicos ao descartar incorretamente peças recém-fabricadas, judiciais, alterando vereditos, médicas, levando a diagnósticos equivocados e por consequência tratamentos errôneos, entre outros exemplos. A definição de incerteza remete a dúvida, isto é, em uma medição, o grau da dispersão dos valores obtidos, que tem o potencial de pertencer ao valor mensurado^[3].

De acordo com a Vocabulário Internacional de Metrologia (VIM), existe uma recomendação, que os elementos que fazem parte da incerteza de medição devem ser segregados em dois grupos, os do Tipo A e os do Tipo B. Esses grupos são determinados a partir de avaliações, baseadas em metodologias estatísticas combinadas ou em outras formas, com o objetivo de obter-se a variância balizada pela matemática probabilística^[4].

A abordagem de Incerteza, é descrita no Guia para Expressão da Incerteza de Medição (GUM), onde a incerteza aplicada a medição é detalhada matematicamente. No GUM também é possível obter dados a respeito de incerteza aplicada a uma única aferição, algo trivial no setor industrial^[5]. Ressalta-se que a mesma envolve complexos conceitos matemáticos e numerosas formulas.

Neste sentido, este trabalho tem por objetivo, facilitar a determinação das incertezas presentes nas aferições de pressão, bem como calcula-las, mediante o desenvolvimento de

uma planilha eletrônica. Devido a existência de diferenças nas descrições matemáticas das incertezas, de um equipamento para outro, o instrumento escolhido para este trabalho foi o manômetro analógico, apontado arbitrariamente.

2. Materiais e Métodos

A presente metodologia, busca descrever os cálculos aplicados determinar a incerteza da medição conforme o método ISO GUM para manômetros analógicos^[5]. O software utilizado neste trabalho para o desenvolvimento das planilhas eletrônicas foi o Microsoft Excel. Contudo, os recursos utilizados para elaboração desta planilha se encontram na maior parte dos *softwares* disponíveis no mercado.

O primeiro passo é a identificação do manômetro a ser calibrado, registrando sua resolução e faixa de indicação, isto é, sua faixa nominal. Em sequência, deve-se identificar os parâmetros do manômetro padrão, sendo eles a sua resolução, incerteza expandida e faixa nominal. Posteriormente, deve-se o manômetro a ser calibrado deve ser fixado a bancada, com o padrão, então devem ser registradas as medidas de avanço e retorno das pressões em diversas faixas ajustadas. Calcula-se por meio da Eq. 1 e 2, respectivamente a correção e a histerese.

$$C = \overline{M} - V_{P} \tag{1}$$

$$H = |\overline{A} - \overline{R}| \tag{2}$$

Onde:

C: Correção;

M: Valor médio da faixa;

V_P: Valor padrão;

H: Histerese;

A: Valor médio do Avanço;

R: Valor médio do Recuo.

Para calcular a incerteza de um instrumento, necessita-se obter o valor de graus de liberdade efetivo, para então com o auxílio da tabela *t-Student* determinar o valor do coeficiente de abrangência que será utilizado para calcular a incerteza da medição. Diante disto, serão descritas as fontes de incertezas presentes e suas respectivas representações matemáticas, que são utilizadas na planilha. Essas fontes são: repetitividade, histerese, resolução do manômetro, resolução do manômetro padrão e a herdada do padrão, sendo estas calculadas respectivamente pelas Eq. 1, 2, 3, 4 e 5. Ao combinar as mesmas por meio da Eq. 6 é possível encontrar a incerteza combinada que deverá ser multiplicada pelo coeficiente de abrangência conforme a Eq. 7 para encontrar a incerteza da medição de um manômetro analógico.

$$U_{R} = \frac{s}{\sqrt{n}} \tag{1}$$

$$U_{\rm H} = \frac{H}{2\sqrt{3}} \tag{2}$$

$$U_{RM} = \frac{R_M}{2\sqrt{3}} \tag{3}$$

$$U_{RP} = \frac{R_P}{2\sqrt{3}} \tag{4}$$

$$U_{HP} = \frac{0.1\% \cdot F_E}{2} \tag{5}$$

$$U_{C} = \sqrt{(U_{R})^{2} + (U_{RM})^{2} + (U_{RP})^{2} + (U_{HP})^{2} + (U_{H})^{2}}$$
(6)

$$U = k \times U_{C} \tag{7}$$

Onde:

U_R: Incerteza da repetitividade;

S: Desvio padrão;

n: Número de pontos de calibração;

U_h: Incerteza da histerese;

H: Histerese;

U_{RM}: Incerteza da resolução do manômetro a ser calibrado;

R_M: Resolução do Manômetro a ser calibrado;

U_{RP}: Incerteza da resolução do manômetro padrão;

R_P: Resolução do manômetro padrão;

U_{HP}: Incerteza herdada do manômetro padrão;

F_E: Fundo de Escala do manômetro padrão;

U_C: Incerteza combinada; U: Incerteza expandida;

k: Coeficiente de abrangência.

O valor do coeficiente de abrangência depende do número efetivo de graus de liberdade e de para determinada probabilidade de abrangência. Assim, assume-se que a distribuição da amostra como *t-student* e determina-se o número efetivo de graus de liberdade por meio da Eq. 8. Por fim, após calcular este valor pode-se obter o valor do coeficiente de abrangência por meio de tabelas. A planilha desenvolvida neste trabalho visa obter uma probabilidade de 95,45%, sendo os valores de K obtidos por meio da Tabela 1.

$$v_{eff} = \frac{U_C^4(y)}{\sum_{i=1}^N \frac{U_R^4(y)}{v_i}}$$
 (8)

Onde:

 v_{eff} : Número efetivo de graus de liberdade;

U_C: Incerteza combinada;

 U_R : Incerteza da repetitividade; v_i : Número de graus de liberdade.

Tabela 1. Valores do coeficiente de abrangência par uma probabilidade de 95,45%.

v_{eff}	k _{95,45%}						
1	13,97	8	2,37	15	2,18	30	2,09
2	4,53	9	2,32	16	2,17	35	2,07
3	3,31	10	2,28	17	2,16	40	2,06
4	2,87	11	2,25	18	2,15	45	2,06
5	2,65	12	2,23	19	2,14	50	2,05
6	2,52	13	2,21	20	2,13	100	2,025
7	2,43	14	2,20	25	2,11	> 100	2

3. Resultados e Discussão

A planilha desenvolvida neste trabalho pode ser visualizada na Figura 1, sendo nela destacados em verde os valores que devem ser fornecidos pelo usuário. Assim, esta ferramenta possibilita que seja calculado a incertezas de um instrumento ao fornecer os dados dos manômetros e as leituras realizadas, sem a necessidade de que o usuário da mesma necessite conhecer a metodologia da mesma ou consulte tabelas.

Informações Iniciais	
Resolução Instrumento Padrão:	0,10
Resolução Instrumento a ser calibrado:	1,00
Fundo de Escala Instrumento Padrão:	200

Padrão	Avanço 1	Retorno 1	Avanço 2	Retorno 2	Avanço 3	Retorno 3	Média Avanço	Média Retorno	Média	Correção	Desvio Padrão	Histerese
15	14,9	14,9	14,8	14,9	14,9	14,9	14,8667	14,9000	14,8833	-0,1167	0,0408	0,0333
30	29,8	29,6	29,7	29,7	29,8	29,7	29,7667	29,6667	29,7167	-0,2833	0,0753	0,1000
45	45,0	44,6	45,1	44,7	45,1	44,7	45,0667	44,6667	44,8667	-0,1333	0,2251	0,4000
60	60,1	59,7	60,0	59,8	60,1	59,8	60,0667	59,7667	59,9167	-0,0833	0,1722	0,3000
75	75,0	74,6	75,0	74,6	75,0	74,6	75,0000	74,6000	74,8000	-0,2000	0,2191	0,4000
90	89,9	89,5	89,9	89,6	89,8	89,6	89,8667	89,5667	89,7167	-0,2833	0,1722	0,3000
105	104,9	104,5	105,0	104,6	105,0	104,6	104,9667	104,5667	104,7667	-0,2333	0,2251	0,4000
120	119,9	119,7	119,8	119,8	119,9	119,7	119,8667	119,7333	119,8000	-0,2000	0,0894	0,1333
135	135,2	135,0	135,1	135,2	135,2	135,0	135,1667	135,0667	135,1167	0,1167	0,0983	0,1000
150	150,3	150,1	150,2	150,2	150,2	150,2	150,2333	150,1667	150,2000	0,2000	0,0632	0,0667

Padrão	U_R	U_H	U_RM	U_RMP	U_HMP	U_Combinada	v_eff	K_95,45%	U
15	0,0167	0,0096	-			0,3075	579134	2	0,61494
30	0,0307	0,0289			0,3097	51601	2	0,61950	
45	0,0919	0,1155		289 0,2887		0,3405	943	2	0,68101
60	0,0703	0,0866			0,1000	0,3265	2325	2	0,65303
75	0,0894	0,1155	0,0289 0,288			0,3399	1042	2	0,67971
90	0,0703	0,0866				0,3265	2325	2	0,65303
105	0,0919	0,1155				0,3405	943	2	0,68101
120	0,0365	0,0385				0,3114	26453	2	0,62284
135	0,0401	0,0289				0,3108	17979	2	0,62165
150	0,0258	0,0192				0,3086	101967	2	0,61710

Resultados
14,8833 ± 0,6149 psi
29,7167 ± 0,6195 psi
44,8667 ± 0,681 psi
59,9167 ± 0,653 psi
74,8 ± 0,6797 psi
89,7167 ± 0,653 psi
104,7667 ± 0,681 psi
119,8 ± 0,6228 psi
135,1167 ± 0,6216 psi
150.2 ± 0.6171 psi

Figura 1. Planilha desenvolvida neste trabalho.

A utilização da planilha minimiza as chances de que ocorram erros de cálculos, principalmente quando associados a recursos de controle de edição do texto, bem como possibilita a realização do procedimento de forma mais produtiva. Assim, pode-se observa um potencial da utilização da mesma para uso profissional. Acrescenta-se ainda, que caso seja utilizada programação é possível que por meio de um botão seja gerado um relatório automaticamente, o que implicaria em um maior incremento de produtividade desta ferramenta.

Dada a simplicidade da planilha, observou-se que também há um potencial acadêmico para aplicação deste tipo de recurso, principalmente para cursos profissionalizantes e técnicos onde a abordagem do assunto é mais superficial. Ressalte-se ainda que atualmente existem diversos aplicativos e *softwares* que permitem a utilização de planilhas eletrônicas em diversos tipos de dispositivos, incluindo smartphones. Assim, este recurso é acessível e pode ser utilizado por grande parte dos alunos com seus próprios dispositivos.

4. Conclusões

Observou-se que a planilha desenvolvida possui potencial para utilização tanto para aplicações profissionais, quanto acadêmicas possibilitando uma forma simples de calibrar e mensurar a incerteza da medição de manômetros analógicos, podendo esta ser utilizada em diversos dispositivos. Assim, a planilha atendeu aos objetivos propostos, podendo a mesma ser adaptada para ser utilizada para funcionamento com outros tipos de instrumentos como: termômetros, balanças, relógios comparadores, etc.

Referências

- [1] ACCMETROLOGIA. O que é calibração e qual a sua importância no processo e na qualidade? Disponível em: https://accmetrologia.com.br/o-que-e-calibracao-e-sua-importancia-no-processo-e-na-qualidade. Acesso em 07 out. 2020.
- [2] PORTALACTION. Incerteza de medição. Disponível em: http://www.portalaction.com.br/incerteza-de-medicao. Acesso em 04 out. 2020.
- [3] CABRAL, P. Erros e incertezas nas medições. Instituto Electrotécnico Português (IEP), Instituto Superior de Engenharia do Porto (ISEP), 2004. Disponível em: http://www.peb.ufrj.br/cursos/ErrosIncertezas.pdf>. Acesso em 07 out. 2020.
- [4] INMETRO. Vocabulário Internacional de Metrologia Conceitos fundamentais e gerais e termos associados. Instituto Nacional de Metrologia, Qualidade e Tecnologia, 2008.
- [5] DAMASCENO, J. C.; ANTONIO, J.; & DE OLIVEIRA, S. P. Avaliação de dados de medição Guia para a expressão de incerteza de medição. Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), 2008.