Espectroscopia fotoacústica a laser de cascata quântica na detecção de etileno

<u>L. L. Mendes</u>¹*; R. R. S. C. Aguiar¹, E. DaMatta¹, M. G. da Silva¹, L. Mota¹

*lina.laison@gmail.com

*lima.laison@gmail.com

Resumo

Um sistema de análise de gases tendo um laser de cascata quântica e um sensor fotoacústico diferencial foi caracterizado para detectar concentrações de partes por bilhão em volume (ppbv) de etileno. O limite de detecção experimentalmente atingido para o aparato foi de 100 ppbv. Com isso, será possível utilizá-lo no sensoriamento dessa molécula, dado que ela se faz presente no processo de amadurecimento de organismos vegetais, assim como na rota de produção e queima de biocombustíveis e etanol.

Palavras-chave: Fotoacústica, Laser de cascata quântica, Sensor, Etileno.

1. Introdução

Face à necessidade de monitorar emissões gasosas relacionadas a processos biológicos, esforços têm sido realizados no desenvolvimento de novos sensores^[1]. A quantificação dinâmica, em níveis de traços, de gases de efeito estufa e sinalizadores biológicos tornou-se primordial para se avançar em áreas de grande importância como agronomia, medicina e ambiente (mudanças climáticas). Em outras palavras, esses sensores auxiliam na detecção de gases-estufa, no acompanhamento da qualidade do manejo de solos na agricultura, no processo de maturação de frutos e no diagnóstico não-invasivo de doenças ^[2,3,4].

A molécula de etileno é um sinalizador natural nas plantas e no homem. É responsável pela germinação de sementes, senescência das flores, abscisão e maturação dos frutos. No homem está relacionado a processos inflamatórios ou identificação de doenças, como diabetes, câncer, problemas renais entre outras ^[4,5,6]. Nesse contexto, o presente trabalho visa caracterizar um aparato FA dedicado ao sensoriamento de etileno em concentrações tão baixas quanto partes por bilhão em volume.

2. Materiais e Métodos

2.1. Materiais

O arranjo experimental utilizado nesse estudo é constituído de computador com programa de aquisição de dados em Python, fonte de corrente contínua (ILX Lightwave LDX3232), controlador de temperatura (Alpes Lasers TCU-51), amplificador "lock-in" (SR830), medidor de potência (Thorlabs PM100D), fonte de radiação (QCL, #sbcw8659), lente de germânio, sensor fotoacústico, banho térmico (Microquímica, MQBMP-01), gases certificados para calibração do sistema (White Martins) e controladores de vazão (Brooks SLA5850).

2.2. Metodologia

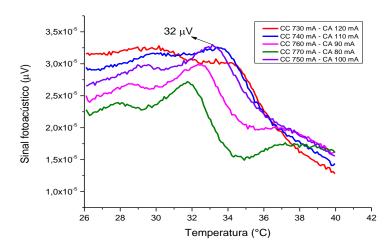

A fim de identificar o etileno (C_2H_4), varreduras espectrais foram realizadas variando o comprimento de onda de emissão da radiação do QCL entre 948,2 cm⁻¹ e 952,2 cm⁻¹. Esse intervalo corresponde a temperaturas de 26°C a 40°C. O amplificador síncrono "lock-in" foi usado para filtrar e amplificar eletronicamente o sinal (tensão) gerado pelas moléculas de C_2H_4 e captado pelos microfones que compõem a célula fotoacústica. O laser foi alimentado por uma corrente total de 850 mA modulada em 3800 Hz. Dessa corrente total, uma fração é contínua (CC) e a outra alternada (CA). A porção alternada é a responsável pela geração do sinal fotoacústico no interior do sensor. Assim, diferentes amplitudes de modulação foram testadas com o intuito de determinar a melhor combinação (CC + CA) que conferira a maior amplitude ao sinal. Essas combinações estão apresentadas na Tabela 1. Com base nesses resultados, foi possível notar que as combinações que apresentaram melhores desempenhos foram (700 + 150) mA e (800 + 50) mA.

Tabela 1. Combinações de correntes (CC + CA) testadas para modular o laser.

Corrente total (mA)	850	850	850	850	850	850
Corrente contínua (mA)	550	600	650	700	750	800
Corrente alternada (mA)	300	250	200	150	100	50

^{*} Valores experimentais.

Em seguida, foi conduzido um outro refinamento dentro dessa região de corrente. Os espectros mostraram que a melhor combinação de correntes aconteceu para (750 + 100) mA com uma amplitude máxima de sinal fotoacústico de 32 μ V, como mostrado na Figura 1.

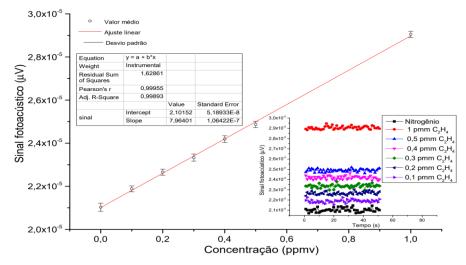


Figura 1. Sinal fotoacústico para as diferentes combinações de correntes para alimentação do laser em função da sua temperatura de operação.

3. Resultados e Discussão

Uma vez identificado o sinal de maior amplitude, a temperatura (comprimento de onda) correspondente foi selecionada a fim de determinar o limite inferior de detecção do aparato fotoacústico (FA). Para isso, uma curva de calibração foi realizada. A Figura 2 (inset) traz os sinais FA (dados experimentais em patamares) para concentrações de etileno (C_2H_4) que variaram de 1,0 parte por milhão em volume (ppmv) a 0 ppmv, em função do tempo. Na mesma Figura 2 é mostrado ainda o resultado do tratamento desses dados, como os valores médios (círculos abertos) e seus respectivos desvios padrão (barras verticais). Nela, foi observado um comportamento linear da amplitude do sinal em função da concentração de C_2H_4 . Esse perfil é refletido pelo valor do coeficiente de correlação (r=0.99955) obtido do ajuste linear representado pela linha vermelha aos dados experimentais. Experimentalmente, um limite de 100 ppbv foi alcançado. Com esse limite de detecção, o aparato FA está apto a ser utilizado em diferentes aplicações que requerem sensoriamento de C_2H_4 . Dentre elas podemos mencionar o monitoramento do processo de maturação em frutos e a detecção dessa molécula na rota de produção e queima de biocombustíveis e também do etanol $^{[7.8]}$.

Cabe ainda destacar que apesar de um limite de detecção (LD) significativamente baixo tenha sido obtido, é possível melhorá-lo. A partir da curva de calibração vemos que as barras de erro das concentrações de 0 ppmv e 0,1 ppmv não se interceptam. A não intersecção sugere a possibilidade de uma diluição ainda maior, permitindo que limites menores sejam medidos. Na literatura, encontramos abordagens diferentes para a inferência do LD de sistemas fotoacústicos para sensoriamento de gases, a exemplo, os trabalhos de Chen [9] e Keeratirawee [10]. Uma delas é trabalhar a própria função linear. Ao fazermos isso, levando em consideração o coeficiente angular (que define a sensibilidade do sistema) do ajuste e o desvio padrão da medida de 0 ppmv de C₂H₄ (N₂ puro), podemos estimar que um LD = 24 ppbv pode ser alcançado.

Figura 2. Curva de calibração do C₂ H₄ em 1ppmV diluída para uma concentração de 100 ppbV (b). Patamares de diluição (a)

4. Conclusões

Nesse trabalho foi caracterizado um aparato fotoacústico para detecção do gás etileno. Uma concentração de 100 partes por bilhão em volume foi experimentalmente determinada como o limite inferior de detecção do sistema. Esse valor abre a possibilidade de aplicações em áreas estratégicas para o desenvolvimento da Região Norte Fluminense e para o país, como agricultura e biocombustíveis. Além disso, o etileno é um precursor de gases-estufa a exemplo do ozônio troposférico. O tema mudanças climáticas tem sido amplamente discutido mundialmente, e muito recentemente, 05/10/2021, laureou com o prêmio Nobel de Física três pesquisadores pelo pioneirismo nas pesquisas sobre Mudanças Climáticas e Sistemas Complexos.

Agradecimentos

LLM agradece à Universidade Estadual Norte Fluminense Darcy Ribeiro pela bolsa de Mestrado junto ao Programa de Pós-Graduação em Ciências Naturais. RRSCA agradece ao CNPq (Processo n°. 136870/2021-0) pela bolsa de Iniciação Científica. MGS e LM agradecem à FAPERJ pelo auxílio financeiro de seus projetos de pesquisa (Processos E-26/010.002018/2014 e E-26/210.327/2018).

Referências

- [1] M. G. González, "Aplicación de wavelets en la detección fotoacústica de gases traza conseñales ruidosas," **Elektron**, vol. 2, no. 1, pp. 26–29, 2018.
- [2] K. Song, H. Cha, V. Kapitanov, Y. Ponomarev, A. Rostov, D. Courtois, B. Parvitte, and V. Zeninari, "Differential helmholtz resonant photoacoustic cell for spectroscopyand gas analysis with room-temperature diode lasers," **AppliedPhysicsB:LasersandOptics**, vol. 75, pp. 215–227, sep 2002.
- [3] S. Alahmari, X.-W. Kang, and M. Hippler, "Diode laser photoacoustic spectroscopy of CO2, h2s and o2 in a differential helmholtz resonator for trace gas analysis in the biosci-ences and petrochemistry," **Analytical and Bioanalytical Chemistry**, vol. 411, pp. 3777–3787, may 2019.
- [4] SILVA, Liana Genuncio et al. Photoacoustic detection of ammonia exhaled by individuals with chronic kidney disease. **Lasers in Medical Science**, p. 1-9, 2021.
- [5] R. C. Leal, J. M. M. Neto, F. C. A. Lima, and C. M. Feitosa, "A química quântica na compreensão de teorias de química orgânica," **Química Nova**, vol. 33, no. 5, pp. 1211–1215, 2010.
- [6] J. R. Ecker, "The ethylene signal transduction pathway in plants," **Science**, vol. 268, pp. 667–675, may 1995.
- [7] CORRÊA, Savio Figueira et al. Effects of ozone exposure on 'Golden' papaya fruit by photoacoustic phase-resolved method: Physiological changes associated with carbon dioxide and ethylene emission rates during ripening. **Journal of Applied Physics**, v. 109, n. 11, p. 114701, 2011.
- [8] TAVARES, Juliana R. et al. Detection of greenhouse gas precursors from ethanol powered vehicles in Brazil. **Biomass and Bioenergy**, v. 61, p. 46-52, 2014.
- [9] CHEN, Ke; GONG, Zhenfeng; YU, Qingxu. Fiber-amplifier-enhanced resonant photoacoustic sensor for sub-ppb level acetylene detection. **Sensors and Actuators A: Physical**, v. 274, p. 184-188, 2018.
- [10] KEERATIRAWEE, Kanchalar; HAUSER, Peter C. Photoacoustic detection of ozone with a red laser diode. **Talanta**, v. 223, p. 121890, 2021.