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Abstract. In this paper an indirect optimization criterion for parameter setting the kernel-based
fault detection process is applied. The procedure analyzed involves the data preprocessing
through the Kernel Independent Component Analysis (KICA) method, and the fault detection
by using a classifier based on the Kernel Fuzzy C-means (KFCM) algorithm to reduce the clas-
sification errors. The main objective of the paper is the adjustment of the kernel parameters to
obtain the best possible performance in the fault detection. To achieve this, two different meta-
heuristic algorithms are used: Differential Evolution and Particle Swarm Optimization. The
proposed approach was evaluated by using the Tennessee Eastman (TE) process benchmark.
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1. INTRODUCTION

During the last two decades, the kernel methods have been established as a valuable alter-
native tool for numerous areas of research (Motai, 2015). In fact, they have played a significant
role in reducing dimensionality, removing noise and, extracting features from the databases,
including the historical data sets obtained from the complex industrial processes (Bernal de
Lázaro et. al. 2016). Many current publications incorporate kernel methods in the fault diagno-
sis tasks because they allow the mapping of input data into a feature space where it is possible
the use of linear algorithms, by avoiding the non-linearity in the original data. However, the
aforementioned operation, and the structure underlying the data, are totally determined by the
kernel function selected. This means that the inappropriate parameter setting for these kernel
methods may result in non satisfactory diagnosis results. Both, the choosing of an appropriate
kernel, and the proper setting of its parameters, are open problems in the current fault diagnosis
applications.

Anais do XXI ENMC – Encontro Nacional de Modelagem Computacional e IX ECTM – Encontro de Ciências e Tecnologia de Materiais,
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The present paper addresses the use of kernel methods to detect incipient faults with small
effects on the monitored systems, which can be hidden by the disturbances in the systems.
Besides, it is investigated how the indirect kernel optimization criteria can improve the perfor-
mance of the kernel classification algorithms used in this stage.

The procedures evaluated in this analysis involves the Kernel Independent Component Anal-
ysis (KICA) algorithm for data preprocessing, and the Kernel Fuzzy C-means (KFCM) al-
gorithm as the classifier. In addition, the stochastic Differential Evolution (DE) and Particle
Swarm Optimization (PSO) algorithms are used to adjust the kernel parameters in the KFCM
algorithm. The study is evaluated using the Tennessee Eastman (TE) process benchmark.

The paper is organized as follows. In Section 2 the techniques used in the fault detection
tasks, and the optimization algorithms employed for the adjustment of the KFCM classifier, are
described. In Section 3, the study case is presented, and the performance of the proposed fault
detection scheme is discussed. Finally, based on the analysis of the results, some conclusions,
and future potential research lines are presented.

2. GENERAL CHARACTERISTICS OF THE PREPROCESSING, CLASSIFICATION
AND OPTIMIZATION TOOLS

In this section the general characteristics of the tools used in the preprocessing and classifi-
cation of the data collected by the fault diagnosis system, and the optimization algorithms used
to obtain the parameters of the classification tool are presented.

2.1 Preprocessing by using Kernel Independent Component Analysis (KICA

Several papers have shown that when a fault diagnosis system incorporates a stage of data
preprocessing, the results in the classification process are improved (Bernal de Lázaro et. al.
2015, 2016).

Kernel ICA (KICA) is an advanced version of the Independent Component Analysis (ICA)
algorithm. The aforementioned technique is mainly used for non-gaussian processes in order
to transform multivariate data into statistically independent components (Manabu, 2003). The
basic idea of kernel ICA is to perform a non-linear mapping of the data into a hyper-dimensional
feature space H, and then to extract the useful information by using the ICA algorithm (Jiang
et. al., 2013).

2.2 Kenel Fuzzy C-means (KFCM)

The kernel clustering methods have been widely used in several fields (Ding & Fu, 2016).
Nevertheless, their applications are still an innovative topic in the field of fault diagnosis (Cao &
et. al., 2012). Specifically, KFCM is a kernelized version of the Fuzzy C-means algorithm with
a high potential for fault detection tasks . The KFCM algorithm can be formalized as follows,
by first defining:

JKFCM =
c∑
i=1

N∑
k=1

(µik)
m ‖Φ(xk)− Φ(vi)‖2 (1)

where ‖Φ(xk)− Φ(vi)‖2 is the square of the distance between the mapping data Φ(xk) and
Φ(vi), vi is the center of each cluster, c is the total number of clusters, µ indicates the member-
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ship of each data point to each cluster, and m is a control parameter, that may be adjusted. The
distance in the feature space is calculated through the kernel in the input space as follows:

‖Φ(xk)− Φ(vi)‖2 = K(xk,xk)− 2K(xk,vi) + K(vi,vi) (2)

Using a Radial Basis Function (RBF) as the kernel function, results

‖Φ(xk)− Φ(vi)‖2 = 2 (1−K(xk,vi)) (3)

where,

K(xk,vi) = e−‖xk−vi‖2/σ2

(4)

As a result, Eq.(1) may be rewritten as:

JKFCM = 2
c∑
i=1

N∑
k=1

(µik)
m ‖1−K(xk,vi)‖2 (5)

Then, minimizing the above expression under the conditions for local extreme allows to deter-
mine the center of each cluster and the pertinence of each data point to each cluster as follows:

vi =

∑N
k=1 (µmikK(xk,vi)xk)∑N
k=1 µ

m
ikK(xk,vi)

(6)

µik =
1∑c

j=1

(
1−K(xk,vi)
1−K(xk,vj)

)1/(m−1) (7)

2.3 Optimization algorithms and kernel function

In many scientific areas, and in particular in the fault diagnosis field, metaheuristic algo-
rithms have been widely used, with excellent results in the solution of optimization problems
(Camps Echevarrı́a et. al. , 2010) . They can locate efficiently the neighborhood of the global
optimum in most of the occasions, with an acceptable computational time.

In this paper, the Differential Evolution (DE) and the Particle Swarm Optimization (PSO)
algorithm are employed to adjust the parameter for KFCM-based classifier, with the goal to
obtain the best results in the classification task.

Differential Evolution Algorithm. Differential Evolution (DE) is one of the most popular
optimization algorithms due to its good convergence and easy implementation (Storn & Price,
1995), (Camps Echevarrı́a et.al., 2014). This algorithm is based on three operators: Mutation,
Crossover and Selection, for which must be defined the population size NP, the number of
parameters to be optimized, the crossover constant CR and the scale factor F. The crucial idea
behind DE is the combination of these operators at each j− th iteration using vector operations
to obtain a new solution candidate. The configuration of DE can be summarized using the
notation DE/Xj/γ/λ∗

where Xj denotes the solution to be disturbed in the j − th iteration ; γ is the number of pair
of vectors used for disturbing Xj , and λ∗ indicates the distribution function that will be used
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in the crossover. In this paper, it has been considered the configuration DE/Xj(best)/1/Bin,
where Xj(best) indicates the best individual of the population, and Bin the Binomial Distribution
function. The mutation operator is expressed in the following way:

Xj+1 = Xj(best) + FS(Xj(α) − Xj(β)) (8)

where Xj+1, Xj(best), Xj(α), Xj(β) ∈ Rn, Xj(α) and Xj(β) are elements of the population Z, i.e.
one pair of vectors, and FS is a scaling factor. For complementing the mutation operator, the
crossover operator is defined for each component Xn of the solution vector:

Xj+1
n =

{
Xj+1
n , if R < CR

Xj(best)
n , otherwise

(9)

where 0 ≤ CR ≤ 1, is the crossover constant that is another control parameter in DE, and R is a
random number generated by the distribution λ∗, which in this case is the binomial distribution.

Finally, the selection operator results as follows:

Xj+1 =

{
Xj+1, if F (Xj+1) ≤ F

(
Xj(best)

)
Xj(best), otherwise

(10)

where F is the objective function such as the one given by Eq. (5).

Particle Swarm Optimization Algorithm. Particle Swarm Optimization (PSO) is an algo-
rithm inspired by the social behavior of different species (Eberhart & Kennedy, 1995). The
underlying idea of this algorithm is based on the collaborative work of individual organisms to
reduce energy at time of migration or to find food in nature. There are many variants of this al-
gorithm. In the present paper, the conventional PSO version developed by Eberhart & Kennedy
(1995) is used, given its simplicity and easy implementation for parameter estimation problems,
with kernel methods.

PSO works with a group or population (swarm) of Z agents (particles), which are interested
in finding a good approximation to the global minimum or maximum x0 of the objective func-
tion f : D ⊂ Rn → R. Each agent moves throughout the search space D. The position of
the z − th particle is identified with a solution for the optimization problem. On each l − th
iteration, its value is updated and it is represented by a vector Xl

z ∈ Rn.
Each particle accumulates its historical best position Xpbest

z , which represents the best achieved
individual experiences. The best position that was achieved along the iterative procedure,
among all the agents in the population, i.e. Xgbest, represents the collective experience.

The generation of the new position needs the current velocity of the particle Vl
z ∈ Rn and

the previous position Xl−1
z

Xl
z = Xl−1

z + Vl
z (11)

The vector Vl
z is updated according to the following expression:

Vl
z = Vl−1

z + c1R(Xpbest
z − Xl−1

z ) + c2R(Xgbest − Xl−1
z ) (12)
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where Vl−1
z is the previous velocity of the z − th particle; R denotes a diagonal matrix with

random numbers in the interval [0,1]; and c1, c2 are the parameters that characterize the trend
during the velocity updating (Kameyama, 2009), balancing the individual and group experi-
ences. They are called cognitive and social parameters, respectively. They represent how the
individual and social experiences influence in the next agent decision. Some studies have been
made in order to determine the best values for c1 and c2. The values c1 = c2 = 2, c1 = c2 = 2.05
or c1 > c2 with c1 + c2 ≤ 4.10 are recommended (Camps Echevarrı́a et.al., 2014b).

Some variants of the algorithm have been developed with the objective of improving some
characteristics of PSO, e.g. velocity, stability and convergence.

Equations (11, 12 ) represent the canonical implementation of PSO. Another well known
variant is the one with inertial weight, which considers either constant inertial weight or inertial
weight with reduction. The idea behind this variant is to add an inertial factor ω for balancing
the importance of the local and global search (Kaneyama, 2009). This parameter ω affects the
updating of each particle velocity by the expression

Vl
z = ωVl−1

z + c1R(Xpbest
z − Xl−1

z ) + c2R(Xgbest − Xl−1
z ) (13)

Nowadays, the most accepted strategy for ω is to establish ω ∈ [ωmin;ωmax], and reduce its
value according to the number of the current iteration l by means of

ω = ωmax −
ωmax − ωmin
Itrmax

l (14)

where Itrmax is the maximum number of iterations to be reached. The basic PSO is recognized
as a particular case for the alternative that considers the inertial weight ω = 1 along all the
execution of the algorithm (Kaneyama, 2009).

Kernel Function. In general, the selection of a kernel depends on the application. However,
the Gaussian, or RBF kernel, is one of the most popular (Motai, 2015 ; Bernal de Lázaro et.
al., 2016). This function is a homogeneous kernel, which maps the input space to a higher
dimension space. The RBF kernel is mathematically defined as:

K(xi,xj) = exp

(
−‖xi − xj‖2

2σ2

)
(15)

where σ is called bandwidth, and indicates the degree of smoothness of the function. If σ is
overestimated, the exponential tends to show a linear behavior, and its projection in a higher di-
mensional space loses its ability to separate non-linear data. Meanwhile, if σ is underestimated,
the result will be highly sensitive to noise in the training step of the algorithm.

Fitness function. The fitness function used in this paper is the partition coefficient (PC) (Li
et. al. , 2012) which measures the fuzziness degree of the partition U. The PC is calculated
by using Eq. (16), and it is used as a validity index to evaluate quantitatively the result of a
clustering method.
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PC =
1

N

c∑
i=1

N∑
k=1

(µik)
2 (16)

The parameters N , c and µik are defined in section 2.2.
If the partition U is less fuzzy, the clustering process is better. Being analyzed in a different

way, it allows to measure the degree of overlapping among the classes. In this case, the optimum
comes up when PC is maximized, i.e., when each pattern belongs to only one class. Likewise,
the minimum comes up when each pattern belongs to all class.

Therefore, the optimization problem is defined as:

max {PC} = max

{
1

N

c∑
i=1

N∑
k=1

(µik)
m

}
subject to:

mmin < m ≤ mmax ; σmin ≤ σ ≤ σmax

where σ is shown in Eq. (15).
When PC is maximized, a better performance is achieved in the classification process,

because confusion is reduced in determining to which class an observation belongs.

3. RESULTS AND DISCUSSION

In this section, the techniques described previously are applied in the design of a fault de-
tection system for the Tennessee Eastman (TE) process benchmark. The fault detection system
designed shows an improvement in the classification process, as a result of the best parameters
determination to the KFCM algorithm, using optimization algorithms.

3.1 Study Case: Tennessee Eastman process

The Tennessee Eastman (TE) process is widely used as a chemical plant benchmark to
evaluate the performance of new control and monitoring strategies (Downs & Vogel, 1993). TE
contains 21 preprogrammed faults, and one normal operating condition data set. The data sets
from the TE are generated during a 48h operation simulation with the inclusion of faults after 8
hours of simulation. Table 1 shows the faults considered in this paper, in order to evaluate the
advantages of the presented fault diagnosis proposal.

All data sets used to test the procedure hereby proposed were given in Ref. (Downs & Vogel,
1993), and it can be downloaded from http://web.mit.edu/braatzgroup/TE process.zip.

According to the specialized literature, Faults 3, 5, 9, 10, 11, as well as Fault 15, have small
magnitudes, and therefore their detection is very difficult. Fault 3 is generated from one step
pulse, in the D feed temperature, but it has a quite close behavior to the normal data in terms of
the mean and variance. Beyond that, Fault 5 is due to one step pulse in the condenser cooling
water inlet temperature. This variation causes a mean shift on the condenser cooling flow, and
a chain reaction in other variables, which produces an out-of-control operation. In this case, the
control loops are able to compensate such changes. In consequence of this, the variables return
to their set-point, except the condenser cooling water inlet temperature (Chiang et.al., 2001).
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Table 1- Description of faults of the TE process.
Fault Process variable Type Fault Process variable Type

F1 A/C feed ratio, B composition constant step F9 D feed temperature Random

F2 B composition, A/C ration constant step F10 C feed temperature Random

F3 D feed temperature step F11 Reactor cooling water inlet temperature Random

F4 Reactor cooling water inlet temperature step F12 Condenser cooling water inlet temperature Random

F5 Condenser cooling water inlet temperature step F13 Reaction kinetics Slow drift

F6 A feed loss step F14 Reactor cooling water valve Sticking

F7 C header pressure loss-reduced availability step F15 Condenser cooling water valve Sticking

F8 A, B, and C feed composition Random

As a matter of fact, the fault does not disappear, it is only hidden.

On the other hand, Fault 9 is a result of one random variation in the feed D temperature. It
is hard to detect too. Fault 10 appears when the feed C temperature, of stream 4, is randomly
changed. It is interesting to observe that as a result of this fault, the temperature and pressure
on the stripper also changes. Then, the stripper steam valve is manipulated by the control loops
to compensate the changes by means of the stripper steam flow rate, which makes difficult the
detection of this fault (Ge et. al., 2009). Fault 15 is a sticking in the condenser cooling water
valve. Similarly to Fault 3, the historical data set of Fault 15 has little difference with respect to
the normal data. Therefore, Fault 15 is also hard to detect.

3.2 Experimental results

To evaluate the proposed diagnostic scheme, two tests were conducted. First, the classifier
based on the KFCM algorithm was trained without considering the preprocessing stage, gener-
ating the False Alarm Rate (FAR) and the Fault Detection Rate (FDR) indicators. Thereafter,
the KICA and the KFCM algorithms were employed together in the fault diagnosis process,
generating also the FAR and FDR indicators. In general, a total of 320 observations (samples)
for each class (operating stages) was used in the training data set, while, 800 observations for
each class were used in the testing data set. As an outstanding aspect, it should be highlighted
that the dimension of feature space was significantly reduced R33 → R24 by the preprocessing
with KICA. The number of independent components herein used represents 73% of the infor-
mation contained in the data set of the TE process.

The DE algorithm implemented for the kernel parameter optimization was executed using
the following specifications: population size NP = 10, maximum iteration MaxIter = 100,
difference vector scale factor F = 0.1, and crossover criterion CR = 0.9. Moreover, the fol-
lowing search ranges for the parameters to be estimated were considered: m ∈ [1, 2], and
σ ∈ [1, 150]. The PSO algorithm was also configured with such ranges. However, for the PSO
algorithm the estimated parameters were searched by using the following specifications: pop-
ulation size = 20, wmax = 0.9, wmin = 0.4, c1 = 2, c2 = 2, and Itrmax = 100. In this
context, were obtained the results for experiment 1 (without data preprocessing ) and 2 (with
data preprocessing using KICA algorithm).

For the implementation of the DE and PSO algorithms the following stopping criteria were
considered:
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• Criterion 1: Maximum number of iterations (100).

• Criterion 2: Value of the objective function (0.9999). See Eq. (16).

The value of the σ parameter for the KICA algorithm used in experiment 2 was 492.53, and
it is was taken from (Bernal de Lázaro et. al. 2016).

Table 2 shows the values of the parameters m and σ estimated for each experiment.

Table 2- Values of the parameters estimated for Experiment 1 (without data preprocessing)and Experi-
ment 2 (with data preprocessing)

Exp.1 (without data preprocesssing) Exp. 2 (with data preprocessing)

Parameters DE PSO Parameters DE PSO

m 1.7148 1.7150 m 1.3832 1.4284

σ (KFCM) 94.9676 85.9322 σ (KFCM) 55.4045 37,7942

Results of the classification. The information provided by the confusion matrix C associated
with the classification process was used to evaluate the performance of the fault diagnosis pro-
cedures (Fawcett, 2006). In the confusion matrix, the main diagonal represents the number of
observations successfully classified. In the first row, outside the main diagonal, the false alarms
are represented (i.e.; i=1, j=2,3,...,k). The number of missing alarms are shown at the first
column (i.e.; j=1, i=2,3,...,k). Then, all general information about the fault diagnosis stage is
available in the confusion matrix. For example, the detectability of the fault detection schemes
can be studied in detail through the False Alarm Rate (FAR), and the Fault Detection Rate (FDR),
given by

FAR =
No. of samples (J > Jlim|f = 0)

total samples (f = 0)
· 100% (17)

FDR =
No. of samples (J > Jlim|f 6= 0)

total samples (f 6= 0)
· 100% (18)

where J is the output for the used discriminative algorithms by considering the fault detection
stage as a binary classification process, and Jlim is the threshold that determines whether one
sample is classified as a fault or normal operation.

Table 3 shows the performance of the evaluated procedure in terms of false alarms and
missing faults detected.

In Experiment 1, the results were obtained without using the data preprocessing with the
KICA algorithm. Note that in this case some faults are easily detected (e.g., Faults 1, 2, 4, 6,
7, 8, 12, 13 and 14), with higher values for the FDR measure. Nonetheless, as expected, some
faults are difficult to detect (e.g., Faults 3, 5, 9, 10, 11, and 15) due to the fact that they are
hidden by the influence of other variables of the process. In general, the performance for these
faults is characterized by a high FAR value or a small FDR value. That means a low probability
of distinguishing correctly between the normal operating condition (NOC) and the abnormal
situations. In general, the experiments performed have shown that PSO gives the best results
for the faults 1, 2, 5, 7, 8 , 9, 10, 12, 13 and 15. Meanwhile, the parameters obtained with the
DE algorithm allowed to achieve a best performance for the faults 1, 3, 4, 6, 11, as well as Fault
15.
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Table 3- Fault detection performance with preprocessing data through KICA.
Exp. 1 Whithout data Preprocessing Exp. 2 Whith data Preprocessing

KFCM-DE KFCM-PSO KFCM-DE KFCM-PSO

Faults FAR% FDR% FAR% FDR% FAR% FDR% FAR% FDR%

F1 9.25 89.13 0.00 95.25 0.00 98.75 0.00 99.13

F2 6.88 96.13 0.00 98.5 0.00 99.25 0.00 92.63

F3 8,25 77.63 6.25 64.88 4.88 88.38 18,75 61.13

F4 6.13 95.75 7.25 89.75 0.00 96.25 0.00 95.38

F5 8,88 76.25 8.13 77.88 8.75 81.75 17.25 64.8

F6 0.00 97.88 6.13 97.25 0.00 95.13 0.00 99.75

F7 9.88 93.13 5.25 93.25 0.00 96.25 0.00 68.38

F8 7.88 91.38 8.75 97.88 0.00 93.25 0.00 66.75

F9 5.25 76.25 0.00 83.13 5.38 92.63 21.88 74.13

F10 0.00 75.38 7.25 76.13 6.25 79.25 9.25 87.88

F11 4.75 82.25 8.88 78.25 7.38 80.75 2.75 81.25

F12 8.5 91.25 8.38 96.75 0.00 92.13 0.00 94.88

F13 8.88 95.13 8.38 96.75 0.00 91.75 0.00 95.63

F14 10.75 93.13 6.88 94.13 0.00 90.13 0.00 99.38

F15 0.00 72.25 10.25 58.88 6.38 63.25 3.25 57.13

In Experiment 2, the results were obtained for the combined work between the KICA and
KFCM algorithms. It is interesting to observe that due to preprocessing stage with KICA there
is an important reduction of the false alarms. Regarding to the small magnitude faults, the
higher results for FDR are obtained with the parameters adjusted by using the DE algorithm.
Except for Faults 10 and 11, the fault detection scheme presented a worse performance with
respect to the small magnitude results when the PSO algorithm was used. In particular, using
KICA and PSO a worse performance for Faults 4 and 9 is obtained.

In general terms, the performance for Faults 2, 3, 4, 5, 7, 8, 9 and 15 is greater when the
classifier uses the DE algorithm to estimate its parameters. By means of the results shown in
the table, it is demonstrated that the overall performance of the detection system is better with
the data preprocessing based on KICA. However, it should not be forgotten the important role
that the configuration of the parameters has for the application of the kernel methods in the fault
detection tasks. In fact, it is necessary to emphasize that the detection levels herein achieved,
for the small-magnitude faults in this process, are still insufficient for the current industrial
standards.

4. CONCLUSIONS AND FUTURE WORK

In this paper was presented a comparative study between two metaheuristic optimization
algorithms, Differential Evolution (DE) and Particle Swarm Optimization (PSO). These algo-
rithms were used to estimate the parameters of the Kernel Fuzzy C-means (KFCM) classi-
fier. First, a diagnostic classifier without considering a data preprocessing stage was evaluated.
Thereafter, the KICA and the KFCM algorithms were jointly employed in the fault detection
process. For the comparative evaluation were established as the comparison criteria the false
alarm and fault detection rates. The experiments have shown that the overall performance of the
detection scheme is better with the data preprocessing, and higher results are obtained adjusting
the kernel parameter by using the DE algorithm.

For future works, it is necessary to analyze the use of KFCM considering the dynamics of
the process to improve the detection of incipient and small-magnitude faults. Furthermore, it
would be interesting to investigate the use of other optimization techniques for kernel parame-
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ters tunning, including the algorithms applied in the preprocessing and classification stages.
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