
08 a 11 de Outubro de 2018
Instituto Federal Fluminense
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Abstract. In this work we apply the stabilized hybrid mixed finite element method developed
and analyzed by Igreja and Loula (2018) to solve the incompressible miscible displacements in
heterogeneous media formed by the coupling of the free-fluid with the porous medium. The hy-
drodynamic problem is governed by the Stokes and Darcy systems coupled by Beavers-Joseph-
Saffman interface conditions. To solve the Stokes-Darcy coupled system we use the stabilized
hybrid mixed method, characterized by the introduction of the Lagrange multipliers associated
with the velocity field in both domains. The global system is assembled involving only the de-
grees of freedom associated with the multipliers and the variables of interest can be solved at the
element level. Considering the velocity fields given by the hybrid method we adopted the SUPG
method (Brooks and Hughes, 1982) combined with an implicit finite difference scheme to solve
the transport equation associated with miscible displacements. Numerical studies are presented
to illustrate the flexibility and robustness of the hybrid formulation. To verify the efficiency of
the hybrid method, computer simulations are also presented for the recovery hydrological flow
problems in heterogeneous porous media, such as continuous injection.

Keywords: Finite Element Method, Hybrid Mixed Methods, Stokes-Darcy Flow, Coupled Prob-
lems, Heterogeneous Media

1. INTRODUCTION

Numerical methods to simulate the incompressible viscous fluid flows coupling Stokes-
Darcy problems has been widely developed due to various applications in physiological phe-
nomena like the blood motion in vessels, hydrological systems in which surface water percolates
through rocks and sand, petroleum engineering where are find fractured media containing vugs
and caves as the naturally fractured carbonate karst reservoirs and industrial processes involving
filtration (Hanspal et al., 2006; Arbogast and Brunson, 2007; Vassilev and Yotov, 2009; Núñez
et al., 2015). This coupled problem is characterized by the coexistence of the free fluid governed
by the Stokes equations and the porous medium modeled by the Darcy problem connected by
the interface conditions that guarantee continuity of mass and momentum across the interface
(Beavers and Joseph, 1967; Saffman, 1971).
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Numerically, among the several methods proposed for the coupled problem, we highlight the
stable and stabilized methods introduced in Salinger et al. (1994); Discacciati et al. (2002); Bur-
man and Hansbo (2007); Masud (2007); Correa and Loula (2009), using a Lagrange multiplier
to impose the interface restrictions we can cite Layton et al. (2003); Urquiza et al. (2008); Gat-
ica et al. (2011) and employing discontinuous Galerkin (DG) methods Rivière (2005); Vassilev
and Yotov (2009). Recently, hybridizations of DG methods have been successfully exploited to
derive new finite element methods with improved stability and reduced computational cost but
still preserving the robustness and flexibility of DG methods (Egger and Waluga, 2013; Igreja
and Loula, 2018).

In this paper, in order to obtain efficiently the velocity field, we use the stabilized hybrid
mixed method, to solve the coupled Stokes-Darcy problem developed and analyzed by Igreja
and Loula (2018). This method is characterized by the introduction of the Lagrange multipliers
associated with the velocity field to weakly impose continuity on each edge of the elements.
Moreover, this method naturally imposes the interface conditions between porous medium and
free fluid through the Lagrange multiplier. This methodology allow the elimination of the local
problems at each element level in favor of the Lagrange multiplier. Thus, the system involves
only global degrees of freedom associated with the multiplier, reducing significantly the com-
putational cost. The accuracy of this method is presented through convergence studies.

Since calculated the hydrodynamic problem we supply the velocity field to the convection-
dominated parabolic equation to obtain the concentrantion field in the coupled domain Stokes-
Darcy. This results can, for example, characterizate a resevoir through the tracer injection
processes, informing the preferred direction of flow (Malta et al., 2000; Núñez et al., 2015) or
study the spread of pollution released in the water and assess the danger (Vassilev and Yotov,
2009). To illustrate the performance of the coupled Stokes-Darcy-transport problem, where
the Streamline Upwind Petrov-Galerkin (SUPG) method (Brooks and Hughes, 1982) combined
with a backward finite difference scheme in time is employed to approximate the concentration
equation, is demonstrated via numerical simulations for the miscible transport problem using a
five-spot pattern for different heterogeneous scenarios through continuous injection processes.

This paper is organized as follow. The model problem Stokes-Darcy-transport is introduced
in Section 2. In Section 3, notations and definitions required to present the hybrid method. The
stabilized mixed hybrid methods for the coupled Stokes-Darcy problem is presented in Section
4. The Section 5 is devoted to convergence study and continuous injection simulations. And
finally, in Section 6, we present the concluding remarks of this work.

2. MODEL PROBLEM

Let Ω ⊂ Rd (d = 2 or 3) the domain composed by two subdomains ΩS and ΩD related to
free fluid and porous medium, respectively. In the subdomain ΩS , with outward unit normal
nS , the flow is governed by the Stokes problem and in porous medium ΩD, with outward unit
normal nD, the Darcy’s law holds. These subdomains are separated by a smooth interface
ΓSD = ∂ΩS∩∂ΩD, where tj define an orthonormal basis of tangent vectors on ΓSD. Moreover,
let Γ = ΓS ∪ ΓD with Γi = ∂Ωi \ ΓSD (i = S,D). The Figure 1 represents a sketch of the
described domain.

Denoting ui = u|Ωi
and pi = p|Ωi

, with i = S,D, the free fluid domain ΩS is modeled by
the Stokes problem that can be write as follow

Given the viscosity µ and the source f , find the pressure pS : ΩS → R and the velocity field
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Figure 1- A sketch of coupled Stokes-Darcy domain.

uS : ΩS → Rd, such that

−µ div∇uS +∇pS = f in ΩS, (1)
divuS = 0 in ΩS, (2)

uS = 0 on ΓS, (3)

where div and ∇ denote, respectively, the divergent and gradient operators. On the other hand,
in porous medium the flow is given by the Darcy problem

Given the hydraulic conductivity K and the source f , find the hydrostatic pressure pD :
ΩD → R and the Darcy velocity uD : ΩD → Rd, such that

uD = −K∇pD in ΩD, (4)
divuD = f in ΩD, (5)
uD · nD = 0 on ΓD, (6)

we define K = k/µ where k is the permeability of the porous medium and the solvability
condition, which the source function f must satisfy∫

ΩD

f dx = 0.

On the interface free fluid/porous medium ΓSD are defined the following conditions

uS · nS + uD · nD = 0 on ΓSD, (7)
pS − µ∇uS nS · nS = pD on ΓSD, (8)

uS · tj = −2

√
k

α
∇uS nS · tj, j = 1, d− 1, on ΓSD. (9)

The conditions (7) and (8) impose the continuity of flux and normal stress, respectively. The slip
condition (9) is known as Beavers-Joseph-Saffman law (Beavers and Joseph, 1967; Saffman,
1971), where α > 0 is an experimentally determined dimensionless constant. The coupled
problem, modeled by the equations (1)-(9), is analyzed in detail by Layton et al. (2003), where
existence and uniqueness of the solution is demonstrated.

The Stokes-Darcy coupled problem provides the velocity field for the diffusive-convective-
reactive transport equation defined on the domain Ω = ΩS ∪ ΩD whose problem is given by
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Given the velocity field u, the porosity φ, the sources f̂ and g and the function c0, find the
concentration c(x, t) : Ω× (0, T )→ R2, such that

φ
∂c

∂t
+ u · ∇c− div(D∇c) + f̂ c = g in Ω× (0, T ), (10)

c(x, 0) = c0(x) in Ω, (11)
D∇c · n = 0 on Γ× (0, T ). (12)

In the Stokes domain

φ = 1 and D = αmI in ΩS, (13)

where αm is a molecular diffusion coeficient and I the identity tensor. In the porous medium,
the tensor D can be defined as

D = D(uD) = αmI + ‖uD‖ [αlE(uD) + αt(I− E(uD))] , E(u) =
u⊗ u

‖u‖2
,

with ‖u‖2 = u2
1 + u2

2, ⊗ the tensorial product, αl the longitudinal dispersion and αt the trans-
verse dispersion. In miscible displacement of a fluid through another in a reservoir the disper-
sion is physically more important than the molecular diffusion. Thus, we assume the following
properties (Peaceman, 1977)

0 < αm ≤ αl, αl ≥ αt > 0 and 0 < φ ≤ 1 in ΩD.

3. NOTATIONS AND DEFINITIONS

To introduce the stabilized hybrid formulation we first recall some notations and definitions.
Let Hm(Ω) the usual Sobolev space equipped with the usual norm ‖ · ‖m,Ω=‖ · ‖m and semi-
norm |·|m,Ω = |·|m, with m ≥ 0. For m = 0, we induction L2(Ω) = H0(Ω) as the space of
square integrable functions and H1

0 (Ω) the subspace of functions in H1(Ω) with zero trace on
∂Ω.

Restricting to the two-dimensional case (d = 2), we define a regular finite element par-
tition Th of the domain Ω, as Th = {K} := the union of all elements K. In cases where
Ω is divided into subdomains Ωi with smooth boundary ∂Ωi and Γi = ∂Ω ∩ ∂Ωi, we have
for each subdomain the following regular partition T i

h = {K ∈ Th ∩ Ωi}, and the following
set of edges E ih = {e; e is an edge of K, for at least one K ∈ T i

h}, E∂,ih = {e ∈ E ih; e ⊂ Γi}
E0,i
h = {e ∈ E ih; e is an interior edge of Ωi}, E ijh = E0,i

h ∩ E0,j
h . This last case denotes the edges

that compose the interface between the subdomains, where Ωi and Ωj are two adjacent subdo-
mains.

We assume that the domain Ω is polygonal. Thus, there exists c > 0 such that h ≤ che,
where he is the diameter of the edge e ∈ ∂K and h, the mesh parameter, is the maximum
element diameter. For each element K we associate a unit normal vector nK . Let Vk

h and Ql
h

denote broken function spaces on Th given by

Vk
h = {v ∈ L2(Ω);vh|K ∈ [Qk(K)]2, ∀K ∈ Th}, (14)
Ql

h = {q ∈ L2(Ω); qh|K ∈ Ql(K), ∀K ∈ Th}, (15)
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where Qk(K) and Ql(K) denote the space of polynomial functions of degree at most k and l,
respectively, on each variable. To introduce the hybrid methods we define the following spaces
associated with the Lagrange multipliers

Mm
h = {µ ∈ L2(Eh) : µ|e = [pm(e)]2, ∀e ∈ E0

h, µ|e = 0, ∀e ∈ E∂h}, (16)
Wm

h = {µ ∈ L2(Eh) : µ|e = [pm(e)]2, ∀e ∈ E0
h, µ|e · ne = 0, ∀e ∈ E∂h}, (17)

Similarly, pm(e) is the space of polynomial functions of degree at most m on an edge e.

4. HYBRID MIXED METHOD FOR THE STOKES-DARCY PROBLEM

Unlike the numerical methods employing Lagrange multipliers only in the interface free
fluid/porous medium to solve the coupled problem (Layton et al., 2003; Gatica et al., 2011),
Igreja and Loula (2018) developed a method with Lagrange multipliers in all domain and there-
fore the conditions on the interface are naturally imposed yielding a symmetric, robust and
stable formulation. This formulation can be viewed below
Find [ui

h, p
i
h] ∈ Vk

h(Ωi)×Ql
h(Ωi), with i = S,D, and the Lagrange multipliers λS

h ∈Mm
h (ESh )

and λD
h ∈ Wm

h (EDh ) such that, for all [vh, qh] ∈ Vk
h(Ω) × Ql

h(Ω) and [µh,µh] ∈ Mm
h (ESh ) ×

Wm
h (EDh )

ASD([uS
h ,u

D
h , p

S
h , p

D
h ,λh,λh]; [vh, qh,µh,µh]) = FSD([vh, qh]), (18)

with

ASD([uS
h ,u

D
h , p

S
h , p

D
h ,λ

S
h ,λ

D
h ]; [vh, qh,µh,µh]) =

AS([uS
h , p

S
h ,λ

S
h ]; [vh, qh,µh]) + AD([uD

h , p
D
h ,λ

D
h ]; [vh, qh,µh])

+
∑

K∈T S
h

[ ∫
ΓSD

(pSh − µ∇uS
h nS · nS)(vh − µh) · nS ds

+

∫
ΓSD

(qh − µ∇vh nS · nS)(uS
h − λD

h ) · nS ds+

∫
ΓSD

µα√
k

(uS
h · t)(vh · t) ds

+ βD

∫
ΓSD

(uS
h − λD

h ) · nS(vh − µh) · nS ds

]
, (19)

FSD([vh, qh]) = FS(vh) + FD([vh, qh]). (20)

The bilinear and linear forms AS(·, ·) and FS(·) and AD(·, ·) and FD(·) for Stokes and Darcy
problem, respectively, are defined as follow

AS([uS
h , p

S
h ,λh]; [vh, qh,µ

S
h ])− FS(vh) =

∑
K∈T S

h

[ ∫
K

µ∇uS
h : ∇vh dx

−
∫
K

divuS
h qh dx−

∫
K

pSh div vh dx−
∫
∂K\ΓSD

µ∇uS
h nK · (vh − µh)ds

−
∫
∂K\ΓSD

µ∇vh nK · (uS
h − λS

h)ds+

∫
∂K\ΓSD

pSh (vh − µh) · nK ds

+

∫
∂K\ΓSD

qh (uS
h − λS

h) · nK ds+ βS

∫
∂K\ΓSD

(uS
h − λS

h) · (vh − µh)ds

−
∫
K

f · vhdx

]
= 0, (21)

Anais do XXI ENMC – Encontro Nacional de Modelagem Computacional e IX ECTM – Encontro de Ciências e Tecnologia de Materiais,
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and

AD([uD
h , p

D
h ,λ

D
h ]; [vh, qh,µh])− FD([vh, qh]) =

∑
K∈T D

h

[ ∫
K

AuD
h · vh dx

−
∫
K

pDh div vh dx−
∫
K

divuD
h qh dx +

∫
∂K

pDh (vh − µh) · nK ds

+

∫
∂K

qh (uD
h − λD

h ) · nK ds+ βD

∫
∂K

A (uD
h − λD

h ) · (vh − µh) ds

+ δ1

∫
K

K(AuD
h +∇pDh ) · (Avh +∇qh) dx

+ δ2

∫
K

A divuD
h div vh dx + δ3

∫
K

κ rot(AuD
h ) rot(Avh) dx

− δ2

∫
K

Af div vh dx +

∫
K

f qh dx

]
= 0. (22)

The Lagrange multipliers λS and λD are identified as the trace of the velocity field, A = K−1,
κ = ‖K‖∞, A = κ−1, where ‖ · ‖∞ denotes the maximum norm, δi, i = 1, 2, 3, are the
least-square stabilization parameters related to the Darcy’s law, mass balance and rotational of
Darcy’s law (Correa and Loula, 2009), respectively, and the stabilization parameters βS and βD
are defined as

βS =
µβS

0

h
and βD = A

βD
0

h
with βS

0 , β
D
0 > 0. (23)

To solve this problem, the hybrid formulation (18) is splited in a set of local problems de-
fined at the element level and a global problem associated with the multiplier. The degrees of
freedom of the interest variables in the local problem are condensed, through the static con-
densation technique, and a global system is assembled in terms of the multiplier. Then, the
global problem is solved leading to the approximate solution of the multiplier, which is plugged
into the local problems to recover the discontinuous approximation of the velocity and pressure
fields.

4.1 Concentration Aproximation

Since calculated the velocity field through the hybrid method (18), we can obtain the con-
centration field using the SUPG method Brooks and Hughes (1982) to aproximate the transport
equation (10)-(12). For this, let the time step ∆t > 0, such that N = T/∆t and tn = n∆t
with n = 1, 2, ..., N and Ih = {0 = t0 < t1 < ... < tN = T} a partition of the interval
I = [0, T ]. Thus, the term involving the time derivative of the concentration is approximated
by backward Euler finite difference operator. Therefore, a semi-discrete approximation for the
transport equation for each n = 1, 2, ...N , given c0(x) = c0(x), can be written as

φ
cn+1 − cn

∆t
+ u · ∇cn+1 − div(D(u)∇cn+1) + f̂ cn+1 = gn+1 in Ω. (24)

Combine the semi-discrete approximation (24) with a stabilized finite element method in
space (SUPG), and introduce the following fully discrete approximation for the concentration
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equation: for time levels n = 1, 2, ...N , find cn+1
h ∈ Ckh , where Ckh is a C0 Lagrangean finite

element space of degree at most k, such that

ASUPG(cn+1
h , ϕh) = FSUPG(ϕh), ∀ϕh ∈ Ckh (25)

with

ASUPG(cn+1
h , ϕh) = φ

∫
Ω

cn+1
h ϕh dx + ∆t

∫
Ω

uh · ∇cn+1
h ϕh dx

+ ∆t

∫
Ω

D∇cn+1
h · ∇ϕh dx + ∆t

∫
Ω

f̂ cn+1
h ϕh dx

+
∑
K∈Th

∫
K

(
φcn+1

h + ∆tuh · ∇cn+1
h + ∆tf̂cn+1

h

)
(δKuh · ∇ϕh) ds

+
∑
K∈Th

∫
K

(
−∆t div(D∇cn+1

h )
)

(δKuh · ∇ϕh) ds (26)

FSUPG(ϕh) = φ

∫
Ω

cnh ϕh dx + ∆t

∫
Ω

gn+1ϕh dx

+
∑
K∈Th

∫
K

(
φcnh + ∆t gn+1

)
(δKuh · ∇ϕh) ds. (27)

In the system (25) the velocity field uh is given by the hybrid formulation (18). The stabilization
parameter δK depends the Péclet number and is defined in Brooks and Hughes (1982).

5. NUMERICAL RESULTS

In this section we present numerical experiments to evaluate the rates of convergence of the
hybrid mixed formulation (18). Moreover, we use the approximate velocity field obtained by the
hybrid method, which is responsible for the flow displacement, to find the concentrantion field
calculated by a predominantly convective equation (10) that is numerically solved via SUPG
method Brooks and Hughes (1982) applied to continuous injection processes in a quarter of a
repeated five-spot pattern for different heterogenous scenarios.

5.1 Convergence Study

In this test we solve a simple problem with K = I and µ = 1.0 in a square domain Ω =
ΩD∪ΩS = (0, 0; 1, 0)×(0, 0; 1, 0), where ΩD = (0, 0; 1, 0)×(0, 0; 0, 5) and ΩS = (0, 0; 1, 0)×
(0, 5; 1, 0), with respectively Stokes and Darcy sources (Correa and Loula, 2009)

f =

[
(1/2 + 1/(8π2)) sin(πx) exp(y/2)

(π − 3/(4π)) cos(πx) exp(y/2)

]
, f =

(
1

2π
− 2π

)
cos(πx) exp(y/2),

In the convergence study we adopt h-refinement strategy taking a sequence n × n, with
4, 8, 16, 32, 64, of uniform meshes of quadrilateral elements QkQl − pm, where k, l and m
denote, respectively, the degree of polynomial space for velocity, pressure and multiplier, con-
sidering equal order approximations for all fields k = l = m = 1 and 2 with the respectives
stabilization parameters for the Stokes and Darcy multipliers βS

0 = 12.0 and 24.0 and βD
0 = 1.0

and 15.0. For the least square stabilization parameters defined in the interior of the elements we
adopt in all simulations δ1 = −0.5, δ2 = 0.5, δ3 = 0.5.
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In Figure 2 we can see the h-convergence study for the velocity, pressure and Lagrange
multiplier in the L2(Ω) norm compared to the interpolant for Q1Q1 − p1 and Q2Q2 − p2 ele-
ments. The results demonstrate optimal convergence rates for all fields studied, except for the
pressure field approximated by biquadratic elements (Fig. 2(d)) in this case the potential loses
the convergence rate.
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Figure 2- h-convergence study of the uh and ph approximations comparing the hybrid method with the
interpolant (Interp.) in L2(Ω) norm for Q1Q1 − p1 and Q2Q2 − p2 elements.

5.2 Continuous Injection Simulation

In here we simulate a quarter of a repeated five-spot pattern in two dimension consisting of
a square domain (unit thickness) with side L = 1000.0 ft. The injector well is located at the
lower-left corner (x = y = 0) and the producer well at the upper-right corner (x = y = L). For
this, we use the hybrid formulation to aproximate the hydrodynamic problem, then we supply
the velocity field to the transport equation that is numerically solved by the SUPG method
combined with an implicit finite difference scheme in three different scenarios described in
Figure 3.

(a) Scenario 1 (b) Scenario 2

Porous Medium

Free Fluid

(c) Scenario 3

Figure 3- Three coupled porous medium (shaded) free fluid (white) domains used to simulate the five-
spot problem.

In three cases is considered a porous medium with homogeneous permeability κ = 10.0mD,
where K = (κ/µ)I, viscosity of the resident fluid is µ = 1.0 cP , porosity φ = 0.1, molecular
diffusion αm = 0.0, longitudinal dispersion αl = 10.0 ft2/day, transverse dispersion αt =
1.0 ft2/day and the flow rate are 800 square feet per day. For the Stokes region the diffusion
tensor is chosen to be D = αmI with αm = 1.0 ft2/day . We use the same values of the
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stabilization parameters δ1 = −0.5, δ2 = 0.5, δ3 = 0.5 and α = 1.0. Moreover, a time step of
5 days and uniform meshes of 40 × 40 bilinear quadrilateral elements are adopted employing
equal order approximations for all fields (velocity, pressure, multiplier and concentration).

The Figures 4-6 show the concentration maps and concentration contours for the proposed
scenarios. In these graphs we can clearly observe the effect of the barrier on the continuous
injection transport generated by the low permeability of the porous medium. The continuous
injection concentration in the scenario 3 (Fig. 6) takes longer time to reach the producer well
due to the higher heterogeneity of the medium, because presents more discontinuities generated
by the free fluid/porous medium interfaces, which reduces the flow velocity.
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(e) 1500 days
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Figure 4- Scenario 1: propagation of the concentration in five-spot problem at 1000, 1500 and 2000 days.

6. CONCLUSIONS

In this work we recalled the hybrid formulation for the Stokes-Darcy problem introduced
by Igreja and Loula (2018) to solve the hydrodynamic flow of the transport concentrantion
aproximated by SUPG method combined with a backward finite difference scheme in time
to simulate the problems in free fluid/porous medium domain. The hybrid method imposes
naturally the interface conditions due to use the Lagrange multipliers not only on the interface,
but in all domain.

The convergence results for the hybrid method illustrate the flexibility and robustness of
the hybrid finite element formulation and show optimal rates of convergence to the velocity
field. With respect the concentration approximation, the combination hybrid/SUPG gave stable
and accurate results in heterogeneous media formed by free fluid and porous medium capturing
precisely the phenomena arising of this interaction.
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Figure 5- Scenario 2: propagation of the concentration in five-spot problem at 500, 1000 and 2000 days.
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Figure 6- Scenario 3: propagation of the concentration in five-spot problem at 1000, 2000 and 4000 days.
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