Modelagem dinâmica do manipulador RD5NT

Dynamic modeling of the manipulator RD5NT

Eduardo Monteiro Aguiar*

Este artigo apresenta o desenvolvimento de um modelo matemático dinâmico para o manipulador RD5NT da DIDACTA ITALIA. Pretende-se que o modelo seja usado no desenvolvimento de estratégias de controle de posição e trajetória. A escolha do tipo de modelagem tem a finalidade de identificar os parâmetros físicos do manipulador.

Palavras-chave: Automação. Modelagem. Robótica. This article presents the development of a dynamic mathematical model for the DIDACTA ITALIA RD5NT manipulator. The model is intended to be used in the development of strategies of position-trajectory control. The choice modeling type aims at identifying the physical parameters of the manipulator.

Keywords: Automation. Modeling. Robotics.

Introdução

O Instituto Federal de Educação, Ciência e Tecnologia Fluminense câmpus Campos-Centro possui três manipuladores, modelo RD5NT, adquiridos da DIDACTA ITALIA, usados como material didático na disciplina de Robótica do Curso de Engenharia de Automação. A inexistência de um modelo matemático do equipamento e as escassas informações a respeito dos seus parâmetros geométricos e dinâmicos dificultam uma exploração maior dos equipamentos como objeto educacional.

O modelo matemático dinâmico tem por finalidade o estudo da evolução temporal do sistema, permitindo o desenvolvimento de estratégias de controle a ele aplicadas, com o intuito de realização de determinada tarefa. Nas palavras de Aguirre, "Um modelo matemático de um sistema real é um análogo matemático que representa algumas características observadas em tal sistema." (AGUIRRE, 2000, p. 38). Assim sendo, a finalidade do modelo matemático dinâmico é enfatizar determinados aspectos físicos do dispositivo, tais como posição no espaço e velocidade.

É propósito deste trabalho, além do desenvolvimento do modelo dinâmico do manipulador, revelar algumas características físicas do equipamento, até então desconhecidas. Opta-se pelo método de modelagem conhecido como modelagem caixa-branca ou modelagem pela física (AGUIRRE, 2000, p. 37).

A abordagem escolhida para a modelagem dinâmica é o método de Newton-Euler devido ao esforço computacional notadamente menor, se comparada à formulação de Lagrange. Embora o método de Newton-Euler apresente esta vantagem, ele necessita

Mestre em Engenharia Mecânica (UFF). Professor do Instituto Federal de Educação, Ciência e Tecnologia Fluminense -Campos dos Goytacazes/RJ – Brasil. E-mail: eaguiar@iff.edu.br.

de um sistema de coordenadas ortogonais para descrever a posição do objeto, o que leva à utilização de matrizes de transformação homogênea (YOSHIKAWA, 1989, p. 81).

Manipulador robótico RD5NT

O manipulador robótico RD5NT é constituído por quatro juntas rotativas (junta da base; junta do ombro; junta do cotovelo; junta do punho) e por uma pinça, cujo comando resume-se a abrir ou fechar o dispositivo, sem nenhum controle da força de atuação. A estrutura possui quatro graus de liberdade. A Figura 1 apresenta o manipulador RD5NT com a indicação das juntas do dispositivo.

Fonte: Manual DIDACTA ITALIA

Método de Newton-Euler

O método segmenta o manipulador em tantas partes quantos forem os seus elos. A Figura 2 representa um manipulador de três elos onde θ 1, θ 2 e θ 3 identificam os ângulos das juntas.

Figura 2 - Manipulador de três elos

Fonte: YOSHIKAWA (1988, p. 100-102)

Como primeiro passo, o manipulador é desmembrado em quantos elos existirem e calculam-se, no sentido da base para o efetuador, os vetores de aceleração e velocidade para cada elo, conforme a Figura 3. Em sequência, calcula-se a força e o momento que devem ser aplicados no centro de massa de cada elo, como ilustra a Figura 4. Tomando o sentido do efetuador para a base, calculam-se a força e o momento que devem ser aplicados à junta i para a realização do movimento, conforme a Figura 5. Por fim, com os dados obtidos nos passos anteriores, calcula-se o torque aplicado em cada junta, conforme a Figura 6.

wi \rightarrow velocidade angular do elo wi \rightarrow aceleração angular do elo pi \rightarrow aceleração linear do elo

Figura 4 - Cálculo do momento e força aplicada ao centro de massa

Fonte: YOSHIKAWA (1988, p. 100-102)

Figura 5 - Cálculo da força e momento para a realização do movimento Fonte: YOSHIKAWA (1988, p. 100-102)

 $\Gamma i \rightarrow$ torque que deve ser aplicado à junta para realizar o movimento.

Figura 6 - Cálculo do torque em cada junta Fonte: YOSHIKAWA (1988, p. 100-102)

As equações de (1) a (14) constituem a formulação de Newton-Euler aplicada a juntas rotativas.

$${}^{i}w_{i} = {}^{i-1}R_{i}^{T} {}^{i-1}w_{i-1} + e_{z} * (\dot{\theta})_{i}$$

$$\tag{1}$$

$${}^{i}(\dot{w})_{i} = {}^{i-1}R_{i}^{T} {}^{i-1}(\dot{w})_{i-1} + e_{z} * (\ddot{\theta}) + ({}^{i-1}R_{i}^{T} {}^{i-1}w_{i-1}) \times e_{z} * (\dot{\theta})$$

$$(2)$$

$${}^{i}(\ddot{p})_{i} = {}^{i-1}R_{i}^{T} \cdot \left({}^{i-1}(\ddot{p})_{i-1} + {}^{i-1}(\dot{w})_{i-1} \times {}^{i-1}(\hat{p})_{i-1} + {}^{i-1}w_{i-1} \times \left({}^{i-1}w_{i-1} \times {}^{i-1}(\hat{p})_{i-1}\right)\right)$$
(3)

$${}^{\ddot{p}}_{i} = {}^{i-1}R_{i}^{T} \cdot {}^{i-1}(\ddot{p})_{i-1} + {}^{i-1}w_{i-1} \times {}^{i-1}(\hat{p})_{i-1} + {}^{i-1}w_{i-1} \times ({}^{i-1}w_{i-1} \times {}^{i-1}(\hat{p})_{i-1})$$
(4)

$$\overset{\ddot{p}}{p}_{i} = {}^{i-1}R_{i}^{T} \cdot ({}^{i-1}(\ddot{p})_{i-1} + {}^{i-1}(\dot{w})_{i-1} \times {}^{i-1}(\hat{p})_{i-1} + {}^{i-1}w_{i-1} \times ({}^{i-1}w_{i-1} \times {}^{i-1}(\hat{p})_{i-1}))$$
(5)

$$\ddot{s}_{i} = (\ddot{p})_{i} + (\dot{w})_{i} \times (\dot{s})_{i} + w_{i} \times (\dot{w}_{i} \times (\dot{s})_{i})$$
(6)

$${}^{i}(\hat{f})_{i} = m_{i} \cdot {}^{i}(\ddot{s})_{i} \tag{7}$$

$${}^{i}(\ddot{p})_{i} = {}^{i-1}R_{i}^{T} \cdot {}^{i-1}(\ddot{p})_{i-1} + {}^{i-1}(\dot{w})_{i-1} \times {}^{i-1}(\hat{p})_{i-1} + {}^{i-1}w_{i-1} \times ({}^{i-1}w_{i-1} \times {}^{i-1}(\hat{p})_{i-1})$$
(8)

$${}^{i}(\ddot{s})_{i} = {}^{i}(\ddot{p})_{i} + {}^{i}(\dot{w})_{i} \times {}^{i}(\hat{s})_{i} + {}^{i}w_{i} \times ({}^{i}w_{i} \times {}^{i}(\hat{s})_{i})$$
(9)

$${}^{i}(\hat{f})_{i} = m_{i} \cdot {}^{i}(\ddot{s})_{i} \tag{10}$$

$${}^{i}(\hat{n})_{i} = {}^{i}I_{i} \cdot {}^{i}(\dot{w})_{i} + {}^{i}w_{i} \times ({}^{i}I_{i} \cdot {}^{i}w_{i})$$

$$\tag{11}$$

$${}^{i}f_{i} = {}^{i}R_{i+1} \cdot {}^{i+1}f_{i+1} + {}^{i}\hat{f}_{i}$$
(12)

$${}^{i}n_{i} = {}^{i}R_{i+1} \cdot {}^{i+1}n_{i+1} + {}^{i}(\hat{n})_{i} + {}^{i}\hat{s}_{i} \cdot {}^{i}(\hat{f})_{i} + {}^{i}(\hat{p})_{i+1} \times ({}^{i}R_{i+1} \cdot {}^{i+1}f_{i+1})$$
(13)

$$\Gamma_i = e_z^T \cdot n_i \tag{14}$$

Em sequência, os elementos pertinentes às equações de (1) a (14) são elencados.

 (w): velocidade angular; (w): aceleração angular; (p): aceleração linear; (p): distância entre juntas contíguas; (s): distância entre a junta e centro de massa; (s): aceleração linear do centro de massa; (f): força aplicada ao centro de massa; (n): momento aplicado ao centro de massa; 	 (I): inércia do eixo da junta; (m): massa do elo; (f): força desenvolvida na junta; (n): momento desenvolvido na junta; (θ): aceleração do ângulo de junta; (θ): velocidade do ângulo de junta; (I): torque aplicado do eixo da junta; (i-1) R_i: Matriz de transformação homogênea.

Fonte: elaborado pelo autor

Método de Denavit-Hartenberg

Matriz de transformação homogênea

Uma matriz de transformação homogênea é um conjunto de elementos que indicam as rotações e translações necessárias para que um ponto localizado em um conjunto de eixos coordenados seja expresso em outro conjunto de eixos coordenados (YOSHYKAWA, 1989, p. 24).

O método de Denavit-Hartenberg (DH) estabelece um conjunto de translações e rotações que permitem a elaboração de uma matriz de transformação homogênea genérica. Os parâmetros de DH são determinados obedecendo ao seguinte procedimento:

a(i-1): Translação ao longo do eixo x(i-1), até o eixo zi;

di: Translação ao longo do eixo zi, até a origem 0i;

α(i-1): Rotação sobre o eixo x(i-1) no sentido de zi para z(i-1), usando a regra da mão direita para determinar o sentido positivo;

θi: Rotação sobre o eixo zi no sentido de xi para x(i-1), usando a regra da mão direita para determinar o sentido positivo.

A Figura 7 apresenta, em sequência, a aplicação do método. A letra Σ representa os conjuntos de eixos coordenados e a letra O representa a origem dos mesmos. Para melhor visualização e também por não ser relevante para este trabalho, o eixo Y foi omitido.

Figura 7 - Procedimentos de rotações e translações

Fonte: Do autor (2014)

Os parâmetros supracitados dão origem à matriz de transformação homogênea de caráter geral elaborada por Denavit-Hartenberg.

$${}^{(i-1)}R_{i} = \begin{cases} \cos(\Theta_{i}) & -\sin(\Theta_{i}) & 0 & a_{(i-1)} \\ \sin(\Theta_{i}) \cdot \cos(\Theta_{i-1}) & \cos(\Theta_{i}) \cdot \cos(\Theta_{i-1}) & -\sin(\Theta_{i-1}) & -\sin(\Theta_{i-1}) \cdot d_{i} \\ \sin(\Theta_{i}) \cdot \sin(\Theta_{i-1}) & \cos(\Theta_{i}) \cdot \sin(\Theta_{i-1}) & \cos(\Theta_{i-1}) & \cos(\Theta_{i-1}) \\ 0 & 0 & 1 \end{cases}$$
(15)

Fonte: YOSHIKAWA (1988, p. 39)

Identificação dos parâmetros

Desenvolvimento das matrizes de transformação homogêneas

O método Denavit-Hartenberg (DH) posiciona em cada junta um sistema de eixos ortogonais, obedecendo três regras quanto à disposição destes eixos (KHALIL, 2002, p. 36).

1. o eixo z, é colocado ao longo do eixo de movimento da junta i;

2. o eixo x_i é posicionado ortogonalmente aos eixo z_i e z_i+1 , preferencialmente colocado sobre o elo que interliga as juntas e direcionado para o elemento final do manipulador;

3. o eixo y, completa o sistema utilizando a regra da mão direita.

Para determinação do modelo geométrico direto, a Figura 8 apresenta o conjunto de juntas do manipulador, utilizando-se dos símbolos convencionais usados para juntas rotativas (YOSHIKAWA, 1988, p. 3).

Figura 8 - Configuração das juntas do manipulador Fonte: Do autor (2014)

A Figura 9 apresenta a disposição dos eixos coordenados ortogonais para levantamento dos parâmetros de Denavit-Hartenberg. A obtenção da distância entre cada sistema coordenado, em valores métricos, obtém-se com um paquímetro de precisão.

Figura 9 - Disposição dos eixos coordenados nas juntas do manipulador Fonte: Do autor (2014)

A Tabela 1 identifica as medições realizadas entre cada sistema de eixos coordenados e o significado da abreviatura para cada distância.

¥		
Distância	Símbolo	Valor
Distância entre a superfície de apoio e a base	pr1	0,105 m
Distância entre a junta da base e o eixo da junta do ombro	p12	0,127 m
Distância entre os eixos da junta do ombro e do cotovelo	p23	0,115 m
Distância entre os eixos da junta do cotovelo e do punho	p34	0,157 m
Distância entre os eixos da junta do punho e do efetuador	p4e	0,092 m
Fonte: Do autor (2014)		

Tabela 1 - Medições entre sistemas de eixos ortogonais

As medições da Tabela 1 e a correlação angular entre eixos permitem determinar os parâmetros DH. A Tabela 2 apresenta os dados que permitem a determinação das diversas matrizes de transformação.

(i-1)T	$a_{(i,1)}$ m	$\alpha_{(i-1)}$ rad	d, m	θ_{i} rad
RT 0	0	0	0,232	0
${}^{0}T_{1}$	0	0	0	θ_1
${}^{1}T_{2}$	0	$\pi/2$	0	θ_2
${}^{2}T_{3}^{2}$	0,115	0	0	$\tilde{\theta_3}$
${}^{3}T_{4}$	0,157	0	0	θ_4
4T	0,092	0	0	0

Tabela 2 - Parâmetros de Denavit-Hartenberg

Fonte: Do autor (2014)

Os valores tabulados resultam nas matrizes de transformação homogênea da Figura 10.

RT ₀ =	$\left\{\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	${}^{0}T_{1} = \left\{ \begin{array}{cccc} C1 & -S1 & 0 & 0 \\ S1 & C1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right\}$	
¹ T ₂ =	$\left(\begin{array}{ccccc} C2 & -S2 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ S2 & C2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$	${}^{2}T_{3} = \left\{ \begin{array}{ccccc} C3 & -S3 & 0 & 0,117\\ S3 & C3 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{array} \right.$	
³ T ₄ = 〈	$\left\{\begin{array}{ccccc} C4 & -S4 & 0 & 0,155\\ S4 & C4 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\end{array}\right\}$	${}^{4}T_{e} = \left\{ \begin{array}{cccc} 1 & 0 & 0 & 0,093 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right\}$	

Figura 10 - Matrizes de transformação homogênea parciais

Fonte: Do autor (2014)

Faz-se necessário estabelecer símbolos para a representação dos elementos das matrizes, que são extensos. Desta forma, convenciona-se: $\cos(\theta_1) \rightarrow C1; \cos(\theta_2) \rightarrow C2; \cos(\theta_3) \rightarrow C3; \cos(\theta_4) \rightarrow C4; \sin(\theta_1) \rightarrow S1;$

 $\operatorname{sen}(\theta_2) \to \operatorname{S2}; \operatorname{sen}(\theta_3) \to \operatorname{S3}; \operatorname{sen}(\theta_4) \to \operatorname{S4}; \cos(\theta_2 + \theta_3) \to \operatorname{C23}; \cos(\theta_2 + \theta_3 + \theta_4) \to \operatorname{C234}.$

Fonte: YOSHIKAWA, 1988, p. 42

Medição dos centros de massa

Na determinação do centro de massa de cada elo, usa-se o seguinte método: coloca-se o elo sobre uma aresta de 4 mm de espessura, tomando-se o cuidado de manter o paralelismo entre o eixo da junta e a aresta. Ajusta-se o posicionamento até atingir o ponto de equilíbrio. Obtido o equilíbrio, determina-se o centro de massa pelo ponto médio da aresta. Os valores estão elencados na Tabela 3.

Tubera 5 Determin	nação dos centr	os de massa e	ie eada eio	
ELO	PONTO	EIXO	SÍMBOLO	DISTÂNCIA
BASE	CM1	Z1	s11	0,036 m
OMBRO	CM2	X2	s22	0,017 m
COTOVELO	CM3	X3	s33	-0,01 m
PUNHO	CM4	X4	s44	0,02 m

Tabela 3 - Determinação dos centros de massa de cada elo

Fonte: Do autor (2014)

Identificação do torque gravitacional do jogo de molas

No manipulador, um conjunto de três molas, interligando a base fixa ao elo do ombro, exerce uma força contrária à força peso atuante no centro de gravidade do elo da junta do ombro. Para identificar a rigidez da mola, usa-se o seguinte procedimento: uma das extremidades da mola é fixada a uma mesa e a outra é tracionada por um dinamômetro. O deslocamento da mola é medido com um paquímetro, sendo relacionado à força atuante. A Tabela 4 apresenta os resultados.

DADOS EXPERIMENTAIS DA MOLA					
Deslocamento (metro)	Força (Newton)				
0,064	4				
0,074	8				
0,084	12				
0,094	16				
0,104	20				
0,114	24				

Tabela 4 - Força do conjunto de molas

Fonte: Do autor (2014)

Os dados da Tabela 4 permitem o levantamento da equação da força que efetivamente atua no centro de massa do elo do ombro em função do ângulo da junta (θ 2).

$$f(efetiva) = -0,1147^*\cos(\theta 2 - 0,787)$$
(16)

O torque atuante sobre o centro de massa do elo do ombro (s22) com sentido contrário ao torque provocado pela gravidade é encontrado pela equação:

$$g_{mola} = -s22^*0,1147^*\cos(\theta 2 - 0,787)$$
(17)

A equação (18) permite calcular o torque gravitacional atuante na junta do ombro sem o efeito da mola:

 $g2 = p23*m_3*C2*grv + s22*m_2*C2*grv + p23*m_4*C2*grv + (p34*m_4 - s33*m_3)$ *grv*C23+s44*m_4*grv*C234. (18)

Adicionando o efeito das molas (17) no torque gravitacional atuante no ombro (18), calcula-se o valor absoluto da gravidade (grv) pela equação (19).

 $g2 = p23*m_3*C2*grv + s22*m_2*C2*grv + p23*m_4*C2*grv + (p34*m_4 - s33*m_3)$ *grv*C23+s44*m_4*grv*C234 - s22*0,1147* cos($\theta2 - 0,787$) (19)

Medição da massa de cada elo

Utilizando balanças de precisão, determina-se a massa de cada elo. Os resultados obtidos estão contidos na Tabela 5.

	1	
ELO	SÍMBOLO	MASSA (kg)
BASE	m1	1,271
OMBRO	m2	1,433
COTOVELO	m3	2,675
PUNHO	m4	0,324

	Tabela	5	- N	/lassa	de	cada	elo	do	manipu	lado
--	--------	---	-----	--------	----	------	-----	----	--------	------

Fonte: Do autor (2014)

Medição do momento de inércia de cada elo

O momento de inércia em relação ao eixo de rotação de cada junta é determinado adotando a técnica do pêndulo físico. Considerando que os eixos estão em paralelo, aplica-se o teorema dos eixos paralelos de Steiner (NUSSENZVEIG, 2000, p. 259). Esta abordagem permite estabelecer um conjunto de equações para cálculo do momento de inércia em relação ao eixo da junta. A Figura 11 representa o procedimento.

Figura 11 - Procedimento para determinação da inércia da junta de rotação Fonte: Do autor (2014)

O período em segundos, para pequenos ângulos de oscilação, pode ser encontrado pela equação (20) (CAPARICA, 2007, p. 390).

$$\tau = 2 \cdot \pi \cdot \sqrt{\frac{I}{m \cdot g \cdot R}} \tag{20}$$

Modificando a equação (20), encontra-se o valor do momento de inércia em relação ao centro de massa.

$$I = \frac{\tau^2 \cdot m \cdot g \cdot R}{(2 \cdot \pi)^2}$$
(21)

Onde:

I → momento de inércia em relação ao centro de massa;

 $m \rightarrow massa do elo em kg;$

 $\tau \rightarrow$ período de oscilação;

 $R \rightarrow$ distância entre o eixo de oscilação e o centro de massa.

$$I_{p\hat{e}ndulo} = \frac{\tau^2 \cdot m \cdot g \cdot R}{(2 \cdot \pi)^2}$$
(22)

$$I_{centrode massa} = m_{elo} \cdot R^2 - I_{pendulo}$$
(23)

$$I_{junta} = m_{elo} \cdot D^2 + I_{centrode\ massa}$$
(24)

Medem-se então os valores de m, R e D. Para uma melhor precisão, usa-se um cronômetro para medir o tempo de dez oscilações completas, obtendo como resultado a média dos valores encontrados. A Tabela 6 colige os dados dos momentos de inércia de cada elo.

ELO	SÍMBOLO	MOMENTO DE INÉRCIA
BASE	Izz1	0,002 kgm ²
OMBRO	Izz2	0,0048 kgm ²
COTOVELO	Izz3	0,0131 kgm ²
PUNHO	Izz4	0,00071 kgm ²
Fonte: Do autor (2014)		-

Tabela 6 - Momentos de inércia

O manipulador utiliza um motor C.C. da Maxon, modelo 2130.906-22112-050, cujos dados estão reunidos da Tabela 7.

			-
GRANDEZA	SÍMBOLO	RELAÇÃO	VALOR
Resistência de armadura	R	_	31,9 Ω
Indutância de armadura	L	_	1,71.10 ⁻³ H
Inércia do eixo motor	J _{mi}	_	4,02.10 ⁻⁷ kgm ²
Constante de tempo do motor	_	J _{mi} /b _{mi}	43,2.10 ⁻³ s
Coeficiente de atrito viscoso	b _{mi}	_	9,3.10 ⁻⁶ kgm ² /s
Constante de torque	k,	_	17,2.10 ⁻³ Nm/A
Constante de velocidade	k	_	3.10 ⁻⁵ V/rps
Tensão de alimentação	Ů	_	12 V CC
Relação da caixa de engrenagens	Ň		500

Tabela 7 - Dados do motor de acionamento e da caixa de engrenagem

Fonte: MAXON MOTOR [2014]

Modelo matemático do manipulador

O desenvolvimento do modelo matemático do manipulador é constituído de três ações: elaboração do modelo do manipulador sem o atuador que movimenta cada uma das juntas; elaboração do modelo do atuador, constituído do motor e caixa de engrenagens; acoplamento dos dois modelos.

Modelo matemático do manipulador

O modelo do manipulador é implementado pelas equações de (1) a (14) que constituem o método de Newton-Euler, e que foram elencadas no item 3.

A expansão da equação (14) do método Newton-Euler $\Gamma_i = e_z^T \cdot^i n_i$ resulta na equação matricial (25).

$$\Gamma_{4\times1} = M(\theta)_{4\times4} \times (\ddot{\theta})_{(4\times1)} + C(\theta)_{(4\times6)} \times (\dot{\theta}_{j})_{6\times1} \times (\dot{\theta}_{k})_{6\times1} + B(\theta)_{4\times4} \times (\dot{\theta})_{(4\times1)}^{2} + g(\theta)_{(4\times1)}$$
(25)

Os elementos, na sequência listados, das matrizes da equação (25) são uma função dos parâmetros físicos do manipulador e dos ângulos de junta (θ) que são as variáveis do sistema.

$$\begin{split} &\Gamma_{4\times1}: vetor\ dos\ torques\ aplicados\ às\ juntas\ do\ manipulador\ ;\\ &M\left(\theta\right)_{4\times4}: matriz\ dos\ coeficientes\ dos\ torques\ inerciais\ ;\\ &(\ddot{\theta})_{(4\times1)}: vetor\ de\ aceleração\ dos\ ângulos\ de\ junta\ ;\\ &C\left(\theta\right)_{(4\times6)}: matriz\ dos\ coeficientes\ dos\ torques\ centrífugos\ ;\\ &(\dot{\theta}_{j})_{6\times1}\times(\dot{\theta}_{k})_{6\times1}: vetor\ do\ produto\ cruzado\ das\ velocidades\ dos\ ângulos\ de\ junta\ ;\\ &(\dot{\theta})_{(4\times1)}^{2}: vetor\ dos\ quadrados\ das\ velocidades\ dos\ ângulos\ de\ junta\ ;\\ &(\theta)_{(4\times1)}: vetor\ dos\ quadrados\ das\ velocidades\ dos\ ângulos\ de\ junta\ ;\\ &(\theta)_{(4\times1)}: vetor\ dos\ torques\ gravitacionais\ incidentes\ em\ cada\ junta. \end{split}$$

Modelo matemático do atuador

O circuito do atuador é constituído de um motor de corrente contínua acoplado a uma caixa de engrenagem de redução, conforme representa a Figura 12.

Figura 12 - Motor de acionamento e o conjunto de engrenagens Fonte: ROMANO (2002, p. 41)

A relação entre a corrente de armadura (Ia) e os outros parâmetros elétricos é dada pela equação.

$$i_{a} = \int \left(\left(U_{a} - R_{a} \cdot i_{a} - e_{c} \right) \right) \cdot \left(\frac{1}{L_{a}} \right) \cdot d$$
(26)

A força contraeletromotriz na armadura é determinada pela equação.

$$e_c = N \cdot k_b \cdot (\dot{\Theta})_{ci} \tag{27}$$

A substituição da equação (27) na equação (26) resulta na equação (28):

$$i_{a} = \int \left(\left(U_{a} - R_{a} \cdot i_{a} - N \cdot k_{b} \cdot (\dot{\Theta})_{ci} \right) \right) \cdot \left(\frac{1}{L_{a}} \right) \cdot dt$$

$$\tag{28}$$

O torque resistente no eixo da engrenagem é encontrado na equação mecânica do conjunto motor e engrenagem.

$$\Gamma_r = N \cdot \Gamma_m - I_m \cdot N^2 \cdot (\ddot{\theta})_r - B_m \cdot N^2 \cdot (\dot{\theta})_r$$
⁽²⁹⁾

A relação entre a corrente de armadura e o torque no eixo do motor é dada pela equação:

$$\Gamma_m = k_t \cdot i_a \tag{30}$$

Substituindo a equação (30) na equação (29) resulta a equação (31):

$$\Gamma_r = N \cdot k_t \cdot i_a - I_m \cdot N^2 \cdot (\theta)_r - B_m \cdot N^2 \cdot (\theta)_r$$
(31)

Substituindo a equação (28) na equação (31) resulta a equação (32):

$$\Gamma_{r} = N \cdot k_{t} \cdot \left(\int \left(\left(U_{a} - R_{a} \cdot i_{a} - N \cdot k_{b} \cdot (\dot{\theta})_{r}\right)\right) \cdot \left(\frac{1}{L_{a}}\right) \cdot dt\right) - I_{m} \cdot N^{2} \cdot \left(\ddot{\theta}\right)_{r} - B_{m} \cdot N^{2} \cdot \left(\dot{\theta}\right)_{r}$$
(32)

A equação (32) representa o modelo matemático do atuador de cada junta. Os elementos das equações (26) a (32) são listados em sequência:

- $\Gamma_{r} \rightarrow$ torque resistente oferecido pela junta ao eixo da caixa de acoplamento;
- N → relação de transformação do conjunto de engrenagens da caixa de acoplamento;
- $k_{r} \rightarrow$ constante de torque do motor;
- $U_1 \rightarrow$ tensão de alimentação do motor;
- $R_{a} \rightarrow$ resistência ôhmica da armadura do motor;
- $i_{a} \rightarrow$ corrente de armadura do motor;
- $k_{h} \rightarrow$ constante de velocidade do motor;
- $L_1 \rightarrow$ indutância da armadura;
- $I_m \rightarrow$ inércia do eixo do motor;
- $B_m \rightarrow$ coeficiente de atrito viscoso do motor;
- $(\Theta) \rightarrow$ velocidade do ângulo de junta;
- $(\theta) \rightarrow$ aceleração do ângulo de junta.

Fonte: Do autor (2014)

Acoplamento do atuador na junta do manipulador

A equação (32) representa o torque resistente no eixo da caixa de acoplamento que é oferecido pela junta na qual atua. Esta igualdade entre a equação (32) e a equação (29) permite o acoplamento entre o modelo dinâmico do manipulador e o modelo dinâmico do atuador, resultando no diagrama em blocos da Figura 13.

Figura 13 - Diagrama em blocos do atuador interligado ao manipulador Fonte: Do autor (2014)

Cálculo do modelo dinâmico do conjunto manipulador e atuador

Usa-se o *software* matemático MatLab[®] para gerar o modelo matemático. Os diversos algoritmos criados são alimentados pelos parâmetros físicos identificados, tendo como variáveis os ângulos das juntas. O *software* permite elaborar uma reprodução virtual do equipamento físico possibilitando a comparação entre os dois.

Algumas condições iniciais são consideradas nos cálculos efetuados:

1 – Considera-se que o conjunto de eixos ortogonais Z_0 , Y_0 e X_0 de origem O_0 tem as seguintes condições iniciais:

$${}^{0}w_{0} = [000]; {}^{0}w_{0} = [000]; {}^{0}p_{0} = -|gravidade|.$$

2 – Considera-se a inexistência de força e momento externos, aplicados no efetuador resultando nas seguintes condições:

 ${}^{e}f_{e} = [000]; {}^{e}f_{e} = [000].$

3 – O eixo z é escolhido no modelo geométrico como o eixo de movimento, atendendo a este princípio, exige a multiplicação dos resultados pelo vetor normalizado:

 $e_z = [001].$

Validação do modelo matemático

O programa MatLab[®], através da ferramenta simulink[®], permite, a partir do modelo dinâmico desenvolvido, criar uma planta do virtual manipulador. Para validação do modelo matemático, uma interface gráfica usando o programa LabView[®] e uma placa de aquisição (PCI 6024E) obtêm os dados do manipulador. Desta maneira, podese comparar o comportamento do modelo, através do MatLab[®] e o comportamento da planta física, por intermédio do LabView[®]. A Figura 14 representa a planta criada para o manipulador. A Figura 15 representa a planta criada para o acionador.

Os conectores indicados por: (1); (2); ... (12) são os pontos de interligação com o simulink[®] dos acionadores. Observe que, por uma questão de programação, os ângulos de junta, até então simbolizados por (θ), são substituídos pela letra (q).

Figura 14 - Planta simulink[®] do modelo matemático do manipulador

Fonte: Do autor (2014), uso de programação MatLab®

Figura 15 - Planta de um conjunto de acionamento Fonte: Do autor (2014), uso de programação MatLab[®]

O acoplamento da planta do modelo do manipulador com o modelo do acionador é representado na Figura 16. A ferramenta simulink[®] proporciona uma interface gráfica que permite, através do monitor do computador, verificar a relação gráfica entre os ângulos de junta no transcorrer do tempo.

Figura 16 - Conexão entre a planta do manipulador e a planta dos acionadores Fonte: Do autor (2014), uso de programação MatLab[®]

Comparação entre a velocidade angular das juntas

Os gráficos das figuras 17, 18, 19 e 20 apresentam o comportamento de cada junta. Neste experimento, busca-se a verificação da velocidade angular das duas plantas.

Figura 17 - Junta do punho: manipulador (planta física); modelo matemático Fonte: Do autor (2014), uso de: programação LabView[®]; programação MatLab[®]

Nesta simulação, o punho do manipulador necessita de 4,09 s para percorrer uma faixa angular de -85º a 85º. O modelo matemático percorre a mesma faixa em 4,31s. O manipulador é 0,22 s mais rápido.

Figura 18 - Junta do cotovelo: manipulador (planta física); modelo matemático Fonte: Do autor (2014), uso de: programação LabView[®] ; programação MatLab[®]

O cotovelo do manipulador necessita de 4,37 s para percorrer uma faixa angular de -95º a 91º. O modelo matemático percorre a mesma faixa em 4,93 s. O manipulador é 0,43 s mais rápido.

Figura 19 - Junta do ombro: manipulador (planta física); modelo matemático Fonte: Do autor (2014), uso de: programação LabView[®]; programação MatLab[®]

O ombro do manipulador necessita de 1,73 s para percorrer um intervalo angular de 60°. O modelo matemático percorre o mesmo intervalo em 1,25 s. O modelo é 0,48 s mais rápido.

Figura 20 - Junta da base: manipulador (planta física); modelo matemático Fonte: Do autor (2014), uso de: programação LabView[®]; programação MatLab[®]

A base do manipulador necessita de 6,83 s para percorrer um intervalo angular de 178°. O modelo matemático percorre o mesmo intervalo em 6,98 s. O manipulador é 0,15 s mais rápido.

Erro entre os ângulos das juntas

Como forma de comparação entre o manipulador e o modelo é usado um programa criado no MatLab[®] que plota, em um único gráfico, a trajetória das juntas física e virtual e o erro existente entre elas. A mesma programação permite o cálculo do erro médio absoluto, o erro máximo, o erro mínimo e o desvio padrão.

Calcula-se ainda o coeficiente de correlação de Pearson, definido como "uma medida do grau e da direção de uma relação linear entre duas variáveis" (LARSON, 2004, p. 337). O coeficiente permite estabelecer a correlação entre os ângulos do manipulador e os ângulos gerados pelo modelo.

O coeficiente de correlação de Pearson varia de -1 a +1. Quanto mais próximo de 1 maior será a correlação entre as variáveis no sentido positivo. Quanto mais próximo de -1 maior será a correlação entre as variáveis no sentido negativo. A proximidade do zero informa que as variáveis não guardam correlação.

A Figura 21 apresenta o gráfico das duas curvas da junta do punho. A Tabela 8 elenca os valores comparativos entre manipulador e o seu modelo.

Tabela	8 -	Dados	com	parativos	da	junta	do	punho

coeficiente de Pearson	erro médio absoluto	erro máximo	erro mínimo	desvio padrão
0,99	7,59°	13,38°	4,62°	2,42
Fonte: Do autor (2014)				

Figura 21 - Gráfico da correlação do erro da junta do punho

Fonte: Do autor (2014), uso de programação MatLab®

A Figura 22 apresenta o gráfico das curvas do manipulador e do modelo. A Tabela 9 apresenta os valores de comparação para a junta do cotovelo.

coeficiente de Pearson	erro médio absoluto	erro máximo	erro mínimo	desvio padrão
0,99	11,32°	28,69°	4,82°	7,14°

Tabe	la 9) - (Dados	com	parativos	da	junta	do	cotove	lo
------	------	-------	-------	-----	-----------	----	-------	----	--------	----

Fonte: Do autor (2014)

Figura 22 - Gráfico da correlação do erro da junta do cotovelo

Fonte: Do autor (2014), uso de programação MatLab®

A Figura 23 refere-se à junta do ombro mostrando o gráfico das duas curvas do manipulador e do modelo. A Tabela 10 apresenta os dados de comparação para a junta do ombro.

Tabela 10 - Dados com	parativos da	junta do cotovelo
-----------------------	--------------	-------------------

coeficiente de Pearson	erro médio absoluto	erro máximo	erro mínimo	desvio padrão
0,99	3,16°	9,53°	2,59°	3,110
Eanter Da autor (2014)				

Fonte: Do autor (2014)

Figura 23 - Gráfico da correlação do erro da junta do ombro Fonte: Do autor (2014), uso de programação MatLab[®]

A Figura 24 apresenta o gráfico das duas curvas, manipulador e modelo no que se refere à junta da base. A Tabela 11 apresenta os dados de comparação.

Tabela 11 - Dados comparativos da junta do cotovelo						
coeficiente de Pearson	erro médio absoluto	erro máximo	erro mínimo	desvio padrão		
0,99	9,56°	18,21°	8,37°	7,08°		

Figura 24 - Gráfico da correlação do erro da junta da base

Fonte: Do autor (2014), uso de programação MatLab®

Conclusão

O Modelo dinâmico desenvolvido para o manipulador RD5NT busca a identificação dos seus parâmetros e revela aspectos de construção não observados, tais como o modelo do motor do sistema de acionamento, a função do conjunto de molas no elo do ombro, a localização dos centros de massa de cada elo, a relação de redução do conjunto de engrenagens do elemento motor, o comprimento dos elos e a sua massa, entre outros elementos úteis ao conhecimento físico do equipamento.

Pode-se afirmar que o modelo matemático representa o manipulador com fidelidade aceitável. Destaca-se o coeficiente de correlação de Pearson como sinalizador desta similaridade, lembrando que o coeficiente próximo a 1 indica a forte correlação entre os ângulos do modelo matemático e os respectivos ângulos do manipulador. Nota-se que em nenhuma das juntas o mencionado coeficiente foi menor do que 0,99. Ressalta-se a pequena diferença de tempo observada em cada junta ao percorrerem a mesma faixa angular. Valores reduzidos do erro médio absoluto e do desvio padrão também acenam para uma relação adequada entre o modelo matemático e o manipulador, permitindo o uso do primeiro como objeto para auxílio no estudo das ações desenvolvidas no dispositivo físico.

Referências

AGUIRRE, Luis Antonio. *Introdução à Identificação de Sistemas*: Técnica Lineares e Não-Lineares Aplicadas a Sistemas Reais. Belo Horizonte: UFMG, 2000.

CAPARICA, Álvaro de Almeida. The Isochronism of right-angle triangles. *Revista Brasileira de Ensino de Física*, São Paulo, v. 29, n. 3, 2007.

KHALIL, W., DOMBRE, E. *Modeling, Identification and Control of Robots.* London: Kogan Page Science, 2002.

LARSON, Ron; FARBER, Betsy. Estatística Aplicada. São Paulo: Pearson Prentice Hall, 2004.

MAXON MOTOR. *Products: motor*. Sachseln, [2014]. Disponível em: <www. maxonmotor.com/maxon/view/product/motor/dcmotor/DC-Sonderprogra mm/2130.906-22.112-050>. Acesso em: 27 jan. 2015.

NUSSENZVEIG, H. Moysés. *Curso de Física Básica*: 1, Mecânica. São Paulo: Edgard Blücher, 2000.

ROMANO, Vitor Ferreira. *Robótica Industrial*: Aplicação na Indústria de Manufatura e de Processo. São Paulo: Edgard Blücher, 2002.

YOSHIKAWA, Tsuneo. *Foundations of Robotics*: Analysis and Control. Corona Publishing, 1988.

Artigo recebido em: 6 maio 2014 Aceito para publicação em: 24 nov. 2014