Creation of a national proposal for coordinating responses to extreme weather events: an approach based on autonomous agents and integration of research institutions

Authors

DOI:

https://doi.org/10.19180/2177-4560.v19n12025p29-43

Keywords:

Climate change; Extreme weather events; Global warming; Artificial intelligence.

Abstract

Climate change intensifies extreme events such as storms and droughts, requiring efficient solutions. This study proposes the use of autonomous agents in managing these events, with three objectives: identifying management phases, training coordinators of teams supported by autonomous agents, and developing a national plan. The proposed structure includes six agents: one general coordinator and five agents responsible for diagnosis, preparation, monitoring, training, and recovery. Each agent operates in an integrated manner to ensure an effective response to climate challenges. Additionally, a national network of connected municipal agents is proposed, integrating education, scientific research, and artificial intelligence to optimize resources and strengthen community resilience against this urgent issue.

Downloads

Download data is not yet available.

Author Biography

  • Murilo Minello, Instituto Federal do Rio de Janeiro
    Mestre em Ecologia (UFRJ). Professor de Ecologia do Instituto Federal do Rio de Janeiro (IFRJ) - Campus Arraial do Cabo/ RJ - Brasil

References

Abily, M., Gourbesville, P., De Carvalho Filho, E., Llort, X., Rebora, N., Sanchez, A., & Sempere-Torres, D. (2020). Anywhere: enhancing emergency management and response to extreme weather and climate events. In Advances in Hydroinformatics: SimHydro 2019-Models for Extreme Situations and Crisis Management (pp. 29-37). Springer Singapore.

Albrecht, S. V., & Stone, P. (2018). Autonomous agents modeling other agents: A comprehensive survey and open problems. Artificial Intelligence, 258, 66-95.

Bealt, J., Fernández Barrera, J. C., & Mansouri, S. A. (2016). Collaborative relationships between logistics service providers and humanitarian organizations during disaster relief operations. Journal of Humanitarian Logistics and Supply Chain Management, 6(2), 118-144.

Berglund, E. Z., Monroe, J. G., Ahmed, I., Noghabaei, M., Do, J., Pesantez, J. E., Fasaee, M. A. K., Bardaka, E., Han, K., Proestos, G. T. & Levis, J. (2020). Smart infrastructure: a vision for the role of the civil engineering profession in smart cities. Journal of Infrastructure Systems, 26(2), 03120001.

Bousquet, F., & Le Page, C. (2004). Multi-agent simulations and ecosystem management: a review. Ecological modelling, 176(3-4), 313-332.

Chandes, J., & Paché, G. (2010). Investigating humanitarian logistics issues: from operations management to strategic action. Journal of Manufacturing technology management, 21(3), 320-340.

Chen, J. Y., Lakhmani, S. G., Stowers, K., Selkowitz, A. R., Wright, J. L., & Barnes, M. (2018). Situation awareness-based agent transparency and human-autonomy teaming effectiveness. Theoretical issues in ergonomics science, 19(3), 259-282.

Clarke, B., Otto, F., Stuart-Smith, R., & Harrington, L. (2022). Extreme weather impacts of climate change: an attribution perspective. Environmental Research: Climate, 1(1), 012001.

Comfort, L. K., Boin, A., & Demchak, C. C. (Eds.). (2010). Designing resilience: Preparing for extreme events. University of Pittsburgh Pre.

Damaševičius, R., Bacanin, N., & Misra, S. (2023). From sensors to safety: Internet of Emergency Services (IoES) for emergency response and disaster management. Journal of Sensor and Actuator Networks, 12(3), 41.

Eckstein, D., Künzel, V., & Schäfer, L. (2021). The global climate risk index 2021. Bonn: Germanwatch.

Fankhauser, S., & McDermott, T. K. (2014). Understanding the adaptation deficit: why are poor countries more vulnerable to climate events than rich countries?. Global Environmental Change, 27, 9-18.

Greeven, S., Kraan, O., Chappin, É. J., & Kwakkel, J. H. (2016). The emergence of climate change mitigation action by society: an agent-based scenario discovery study. Journal of Artificial Societies and Social Simulation, 19(3).

Ghosh, P., & De, M. (2022). A comprehensive survey of distribution system resilience to extreme weather events: concept, assessment, and enhancement strategies. International Journal of Ambient Energy, 43(1), 6671-6693.

Gulzar, A., Islam, T., Gulzar, R., & Hassan, T. (2021). Climate change and impacts of extreme events on human health: An overview. Indonesian Journal of Social and Environmental Issues (IJSEI), 2(1), 68-77.

Handmer, J., Honda Y., Kundzewic Z. W., Arnell, N., Benito G., Hatfield J., Mohamed, I. F., Peduzzi P., Wu S., Sherstyukov, B., Takahashi, K. & Yan Z. (2012). Changes in impacts of climate extremes: human systems and ecosystems. In: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation [Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.). A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK, and New York, NY, USA, pp. 231-290.

Kafi, K. M., Ponrahono, Z., & Salisu Barau, A. (2024). Addressing knowledge gaps on emerging issues in weather and climate extreme events: a systematic review. Climatic Change, 177(3), 56.

Khan, M. A., Peters, S., Sahinel, D., Pozo-Pardo, F. D., & Dang, X. T. (2018). Understanding autonomic network management: A look into the past, a solution for the future. Computer Communications, 122, 93-117.

Kapucu, N., & Özerdem, A. (2011). Managing emergencies and crises. Jones & Bartlett Publishers.

Kumar, S., Chatterjee, U., David Raj, A., & Sooryamol, K. R. (2024). Global Warming and Climate Crisis/Extreme Events. In Climate Crisis: Adaptive Approaches and Sustainability (pp. 3-18). Cham: Springer Nature Switzerland.

Mirza, M. M. Q. (2003). Climate change and extreme weather events: can developing countries adapt?. Climate policy, 3(3), 233-248.

Othman, S. B., Zgaya, H., Dotoli, M., & Hammadi, S. (2017). An agent-based decision support system for resources' scheduling in emergency supply chains. Control Engineering Practice, 59, 27-43.

Raymond, C., Horton, R. M., Zscheischler, J., Martius, O., AghaKouchak, A., Balch, J., Bowen, S. G., Camargo, S. J., Hess, J., Kornhuber, K., Oppenheimer, M., Ruane, A. C., Wah, T. & White, K. (2020). Understanding and managing connected extreme events. Nature climate change, 10(7), 611-621.

Rawat, A., Kumar, D., & Khati, B. S. (2024). A review on climate change impacts, models, and its consequences on different sectors: a systematic approach. Journal of Water and Climate Change, 15(1), 104-126.

Seneviratne, S. I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Luca, A. D., Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto, I., Satoh, M., Vicente-Serrano, S. M., Wehner, M., Zhou, B. & Allan, R. (2021) Weather and climate extreme events in a changing climate. In: Masson-Delmotte, V. P., Zhai, A., Pirani, S. L. and Connors, C. (eds.) Climate Change 2021: The Physical Science Basis: Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp. 1513-1766.

Strömberg, D. (2007). Natural disasters, economic development, and humanitarian aid. Journal of Economic perspectives, 21(3), 199-222.

van de Merwe, K., Mallam, S., & Nazir, S. (2024). Agent transparency, situation awareness, mental workload, and operator performance: A systematic literature review. Human Factors, 66(1), 180-208.

Published

15-04-2025

How to Cite

Creation of a national proposal for coordinating responses to extreme weather events: an approach based on autonomous agents and integration of research institutions. Boletim do Observatório Ambiental Alberto Ribeiro Lamego, [S. l.], v. 19, n. 1, p. 29–43, 2025. DOI: 10.19180/2177-4560.v19n12025p29-43. Disponível em: https://editoraessentia.iff.edu.br/index.php/boletim/article/view/23447.. Acesso em: 20 jun. 2025.