Sample design in marine meiofauna

Authors

  • Luciana Monteiro Lage Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF)
  • Ricardo Coutinho Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM)

DOI:

https://doi.org/10.5935/1809-2667.20100014

Keywords:

Meiofauna, Sampling design, Monitoring

Abstract

Human activities on coastal marine biota have led to discussions of appropriate sampling protocols, so that the various studies can be compared. Most sampling methods produced for meiofauna, contemplates the sedimentary environment. However, it is known that meiofauna can inhabit any substrate in the marine environment. Meiofauna is recognized as a good tool for studies of environmental quality and marine ecological processes. The use of experimental studies can increase understanding of the mechanisms of dispersal and colonization of meiofauna and their ecological processes.

Downloads

Download data is not yet available.

Author Biographies

  • Luciana Monteiro Lage, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF)
    Mestre – Programa de Pós-Graduação em Ecologia e Recursos Naturais – Centro de Biociências e Biotecnologia – Universidade Estadual do Norte Fluminense
  • Ricardo Coutinho, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM)
    Doutor – Divisão de Bioincrustação – Departamento de Oceanografia – Instituto de Estudos do Mar Almirante Paulo Moreira.

References

ALBERTELLI, G. et al. Differential responses of bacteria, meiofauna and macrofauna in a shelf area (Ligurian Sea, NW Mediterranean): role of food availability. Journal of Sea Research, v.42, p. 11–26, 1999.

ALLER, R.C. The effects of macrobenthos on chemical properties of marine sediments and overlying water. In: McCALL, D.L.; TEVESZ, M.J.S. (Eds). Animal-sediment relations. New York: Plenum, 1982. p. 53–102.

ARMONIES, W. Short-term changes of meiofaunal abundance in intertidal sediments. Helgol Meeresunters., v. 44, p. 375-386, 1990.

ARROYO, N.L. et al. Interactions between two closely related phytal harpacticoid copepods, asymmetric positive and negative effects. J. Exp. Mar. Biol. Ecol., v. 342, n. 2, p. 219–227, 2007.

ATILLA, N. et al. Abundance and colonization potential of artificial hard substrate-associated meiofauna. J. Exp. Mar. Biol. Ecol., v. 287, p. 273–287, 2003.

ATILLA, N.; FLEEGER, J.W. Meiofaunal colonization of artificial substrates in an estuarine embayment. PSZN I Mar. Ecol., v.21, p. 69–83, 2000.

BARNETT, P.R.O. et al. A multiple corer for taking virtually undisturbed samples from shelf, bathyal and abyssal sediments. Oceanol. Acta., v. 7, p. 399-408, 1984.

BETT, B. J. et al. Sampler bias in the quantitative study of deep-sea meiobenthos. Mar. Ecol. Prog. Ser., v. 104, p. 197-203, 1994.

BLOMQVIST, S.; ABRAHAMSSON, B. An Improved Kajak-type gravity core sampler for soft bottom sediments. Schweiz Z. Hydrol., v. 47, p. 81-84, 1985.

BLOMQVIST, S. Reliability of core sampling of soft bottom sediment: an in situ study. Sedimentology, v. 32, p. 605-612, 1985.

BlLOMQVIST, S. Sampling performance of Ekman grabs: in situ observations and design improvements. Hydrobiologia, v. 206, p. 245-254, 1990.

BLOMQVIST, S. Quantitative sampling of soft-bottom sediments: problems and solutions. Mar. Ecol. Prog. Ser., v. 12, p. 295-304, 1991.

CASTRI, F. di et al. Inventorying and monitoring biodiversity: a proposal for an international network. Biol. Znt., v. 27, p. 1-28, 1992.

CHANDER, G.T. et al. The tom-tom corer: a new design of the Kajak corer for use in meiofauna sampling. Hydrobiologia, v. 169, p. 129-134, 1988.

COSENTINO, A.; GIACOBBE, S. Distribution and functional response of sublittoral soft bottom assemblages to sedimentary constrainst. Est. Coast. Shelf Sci., v. 79, n. 2 p. 263–276, 2008.

COULL, B.C. Role of meiofauna in estuarine soft-bottom habitats. Austral. J. Ecol., v. 24, p. 327–343, 1999.

CRAIBb, J.S. A sampler for taking short undisturbed marine cores. J. Cons. Perm. Int. Explor. Mer., v. 30, p. 34–39, 1965.

CRISTONI, C. et al. Spatial scale and meiobenthic copepods recolonization: testing the effect of disturbance size in a seagrass habitat. J. Exp. Mar. Biol. Ecol., v. 298, p. 49–70, 2004.

CURVÊLO, R. R. A meiofauna vágil associada a Sargassum cymosum C. Agardh, na praia do Lázaro, Ubatuba, SP. São Paulo, 1998. 50p. Dissertação (Mestrado) - Universidade de São Paulo.

DA ROCHA, C.M. Efeito do substrato fital na comunidade meiofaunística associada, com ênfase aos Nematoda livres. Recife, 2003. 117p. Tese (Doutorado) - Universidade Federal de Pernambuco.

DANOVARO, R. et al. Benthic response to particulate fluxes in different trophic environments: a comparison between the Gulf of Lions-Catalan Sea (western Mediterranean) and the Cretan sea (eastern Mediterranean). Progress in Oceanography, v. 44, p. 287–312, 1999.

DE BROWER, J.F.C. et al. Interplay between biology and sedimentology in a mudflat (Biezlingse-Ham, Westerscheldt, the Netherlands). Cont. Shelf Res., v. 20, n. 10/11 p. 1159–1177, 2000.

DE MONTETY, L. et al. Utilisation de la scanographie pour l’étude des sédiments: influence des paramètres physiques, chimiques et biologiques sur la mesure des intensités tomographiques. Can. J. Earth Sci., v. 40, p. 937-948, 2003.

DE TROCH, M. et al. Zonation and structuring factors of meiofauna communities in a tropical seagrass bed (Gezi Bay, Kenya). J. Sea. Res., v. 45, p. 45–61, 2001.

DUFOUR, S.C. et al. A new method for three dimensional visualization and quantification of biogenic structures in aquatic sediments using axial tomodensitometry.

ELEFHERIOU, A.; MOORE, C.G. Macrofauna techniques. In: ELEFTHERIOU, A.; McINTYRE, A. (Eds). Methods for the study of marine benthos. Oxford, UK: Blackwell, 2005. p. 160–228.

FINDLAY, S.E.G. Influence of sampling scale on apparent distribution of meiofauna on a sandflat. Estuaries, v. 5, p. 322–324, 1982.

FLEEGER, J. W. et al. Sampling equipment. In: HIGGINS, R. P.; THIEL, H. (Eds) Introduction to the Study of Meiofauna. Washington, DC.: Smithsonian Institution Press, 1988. p. 115-125.

FONSÊCA-GENEVOIS, V. et al. Colonization and early succession on artificial hard substrata by meiofauna. Marine Biology, v. 148, p. 1039–1050, 2006.

FRANZ, D.R.; FRIEDMAN, I. Effects of a macroalgal mat (Ulva lactuca) on estuarine sand flat copepods: an experimental study. J. Exp. Mar. Biol. Ecol., v. 271, p. 209–226, 2002.

GIERE, O. Meiobenthology: the microscopic fauna in aquatic sediments. 2nd ed. Berlin: Springer-Verlag, 2009.

GOURBAULT, N.; WARWICK, R.M. Is the determination of meiobenthic diversity affected by the sampling method in sandy beaches? Mar. Ecol. PSZN, v. 15, p. 267–279, 1994.

GRAY, J.S.; ELLIOT, M. Ecology of marine sedments: from science to management. 2nd ed. New York: Oxford Univ. Press, 2009.

GWYTHER, D. et al. Recolonisation of mine tailing by meiofauna in mesocosm and microcosm experiments. Mar. Poll. Bull., v. 58, n. 6, p. 841–850, 2009.

GWYTHER, J. Meiofauna in phytal-based and sedimentary habitats of a temperate mangrove ecosystem – a preliminary survey. Proc. R. Soc. Vict., v. 112, p. 137–151, 2000.

GWYTHER, J.; FAIRWEATHER, P.G. Colonisation by epibionts and meiofauna of real and mimic pneumatophores in a cool temperate mangrove habitat. Mar. Ecol. Prog. Ser., v. 229, p. 137–149, 2002.

GWYTHER, J.; FAIWEATHER, P.G. Meiofaunal recruitment to mimic pneumatophores in a cool-temperate mangrove forest: spatial context and biofilm effects. J. Exp. Mar. Biol. Ecol., v. 317, p. 69–85, 2005.

HALL, S.J. Physical disturbance and marine benthic communities: life in unconsolidated sediments. Oceanogr. Mar. Biol. Annu. Rev., v. 32, p. 179–239, 1994.

HESSLER, R. R.; JUMARS, P. A. Abyssal community analysis from replicate box cores in the central North Pacific. Deep-Sea Res., v. 21, p. 185-209, 1974.

JENSEN, P. Meiofauna abundance and vertical zonation in a sublittoral soft bottom, with a test of the Haps corer. Mar. Biol., v. 74, p. 319-326, 1983.

KANNEWORFF, E.; NICOLAINSEN, W. The "Haps": a frame-supported bottom corer. Ophelia, v. 10, p. 119-129, 1973.

KANNEWORFF, E.; NICOLAISEN, W. A simple, hand-operated quantitative bottom sampler. Ophelia, v. 22, p. 253–255, 1983.

KENNEDY, A.D.; JACOBY, C.A. Biological indicators of marine environmental health: meiofauna — a neglected benthic component? Environ. Monitor. Assess., v. 54, p. 47–68, 1999.

KINGSTON, P.F.; RIDDLE, M.J. Cost effectiveness of benthic faunal monitoring. Mar. Poll. Bull., v. 20, p. 490–496, 1989.

KRAMER, K. J. M. et al. Tidal esruaries: manual of sampling and analytical procedures. Rotterdam, The Netherlands: Balkema, 1994.

KRISTENSEN, R.M.; HIGGINS, R.P. A new family of Arthrotardigrada (Tardigrada: Heterotardigrada) from the Atlantic coast of Florida, U.S.A. Trans. Am. Microsc. Soc., v. 103, p. 295-311, 1984.

LAGE, L.M. Distribuição espaço-temporal da meiofauna associada a algas epilíticas em costão rochoso, com ênfase aos Nematoda livres (Arraial do Cabo – Rio de Janeiro, Brasil). Recife, 2005. 122p. Dissertação (Mestrado - Biologia Animal) - Universidade Federal de Pernambuco.

MARE, M.F. A study of marine benthic community with special reference to the microorganisms. J. Mar. Biol. Ass. U.K., v. 25, p. 517–554, 1942.

MAZIK, K.; ELLIOT, M. The effects of chemical pollution on the bioturbation potential of estuarine intertidal mudflats. Helgol. Mar. Res., v. 54, p. 99–109, 2000.

MAZIK, K. et al. Accurate quantification of the influence of benthic macro- and meio-fauna on the geometric properties of estuarine muds by micro computer tomography. J. Exp. Mar. Biol. Ecol., v. 354, p. 192–201, 2008.

McINTYRE, A.D.; WARWICK, R.M. Meiofauna techniques. In: HOLME, NA; McINTYRE, A.D. (Eds). Methods for the study of marine benthos. Oxford: Blackwell Scientific, 1984. p. 217–244.

McLACHLAN, A. et al. Vertical gradients in the fauna and oxidation of two exposed sandy beaches. S. Afr. J. Zool., v. 14, p. 43–49, 1979.

MEADOWS, P.S.; HARIRI, M.S.B. Effects of two infaunal polychaetes on sediment shear strength and permeability: an experimental approach. Symp. Zool. Soc. London., v. 63, p. 319–321, 1991.

MEADOWS, P.S.; MEADOWS, A. The geotechnical and geochemical implications of bioturbation in marine sedimentary ecosystems. In: MEADOWS, P.S.; MEADOWS, A. (Eds). The environmental impact of burrowing animals and animal burrows, Symp. Zool. Soc. Lond., v. 63, p. 157–181, 1991.

MERMILLOD-BLONDIN, F. et al. Assessment of the spatial variability of intertidal benthic communities by axial tomodensitometry: importance of fine scale heterogeneity. J. Exp. Mar. Biol. Ecol., v. 287, p. 193–208, 2003.

MERMILLOD-BLONDIN, F. et al. Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment. Aquat. Microb. Ecol., v. 36, n. 3, p. 271–284, 2004.

MICHAUD, E. et al. Use of axial tomography to follow temporal changes of benthic communities in an unstable sedimentary environment (Baie des Ha! Ha!, Saguenay Fjord). J. Exp. Mar. Biol. Ecol., v. 285–286, p. 265–282, 2003.

MIRTO, S.; DANOVARO, R. Meiofaunal colonisation on artificial substrates: a tool for biomonitoring the environmental quality on coastal marine systems. Mar. Pollut. Bull., v. 48, p. 919–926, 2004.

MONTOUCHET, P.C. Sur la communauté des animaux vagiles associés a Sargassum symosus C. Agardh a Ubatuba, État de São Paulo, Brésil. Stud. Neotrop. Fauna Env., v. 14, p. 33-64, 1979.

MORTIMER, R.J.G. et al. The effect of macrofauna on porewater profiles and nutrient fluxes in the intertidal zone of the Humber estuary. Estuar. Coast. Shelf Sci., v. 48, p. 683–699, 1999.

MUNÕZ, A.O.M. Aspéctos ecológicos da margem de Sargassum do costão rochoso da praia de Pedra do Xaréu – PE – Brasil. Recife, 1993. 82p. Dissertação (Mestrado) - Universidade Federal Rural de Pernambuco.

MUUS, B. A new quantitative sampler for the meiobenthos. Ophelia., v. 1, p. 209–216, 1964.

JUMARS, P.A.; NOWELL, A.R.M. Flow environments of aquatic benthos. Ann. Rev. Ecol. Syst., v. 15, p. 303–328, 1984.

NUNES, J.L.S. Colonização da meiofauna em ambientes algal e mimético do infralitoral da ilha de Cabo Frio, Arraial do Cabo – RJ, Brasil. Recife, 2003. 88p. Dissertação (Mestrado - Oceanografia) - Universidade Federal de Pernambuco.

PETERSEN, W. et al. The influence of diagenetic processes on the exchange of trace contaminants at the sediment–water interface. In: CALMANO, W.; FÖRSTNER, U. (Eds.). Sediments and toxic substances. Environmental effects and ecotoxicity. Berlin: Springer–Verlag, 1996. p. 37–50.

PUSCEDDU, A. et al. Organic matter composition, metazoan meiofauna and nematode biodiversity in Mediterranean deep-sea sediments. Deep Sea Res. P.II., v. 56, p. 755–762, 2009.

RASMUSSEN, D. et al. Potential for cadmium uptake in near-shore sediments: effects of bioturbation by the lugworm Arenicola marina. Mar. Ecol. Prog Ser., v. 164, p. 179–188, 1998.

REINECK, H. E. Der Kastengreifer. Natur. Mus. (Frankf.), v. 93, p. 102-108, 1958.

REMANE, A. Halammohydra, ein eigenartiges Hydrozoon der Nord- und Ostsee. Z. Morph. Ökol. Tiere., v. 7, p. 643–677, 1927.

RHOADS, D.C.; BOYER, L.F. The effects of marine benthos on physical properties of sediments: a successional approach. In: McALL, P.L.; TEVESZ, M.J.S. (Eds.). Animal–sediment relations: the biogenic alteration of sediments. London: Plenum, 1982. V.2 : Topics in geobiology. p. 1–52.

RIEDL, R.J.; OTT, J.A. A suction-corer to yield electric potentials in coastal sediment layers. Senckenb. Marit., v. 2, p. 67–84, 1970.

ROGERS, S.I. et al. Sampling strategies to evaluate the status of offshore soft sediment assemblages. Mar. Poll. Bull., v. 56, p. 880–894, 2008.

ROSENBERG, R. et al. Application of computer-aided tomography to visualize and quantify biogenic structures in marine sediments. Mar. Ecol. Prog. Ser., v. 331, p. 23–34, 2007.

ROSENBERG, R.; RINGDAHL, K. Quantification of biogenic 3-D structures in marine sediments. J. Exp. Mar. Biol. Ecol., v. 326, p. 67–76, 2005.

RUTLEDGE, P.A.; FLEEGER, J.W. Laboratory studies on core sampling with application to subtidal meiobenthos collection. Limnol. Oceanogr., v. 33, p. 274-279, 1988.

SCHAFFNER, L.C. et al. Effects of physical chemistry and bioturbation by estuarine macrofauna on the transport of hydrophobic organic contaminants in the benthos. Environ. Sci. Technol., v. 31, n. 11, p. 3120–3125, 1997.

SCHRATZBERGER, M. et al. The structure and taxonomic composition of sublittoral meiofauna assemblages as an indicator of the status of marine environments. J. Mar. Biol. Ass. U.K., v. 80, p. 969–980, 2000.

SOLAN, M. et al. Towards a greater understanding of pattern, scale and process in marine benthic systems: a picture is worth a thousand worms. J. Exp. Mar. Biol. Ecol., v. 285–286, p. 313–338, 2003.

SOLAN, M.; KENNEDY, R. Observation and quantification or in-situ animal: sediment relations using time-lapse sediment profile imagery (t-SPI). Mar. Ecol. Prog. Ser., v. 228, p. 179–19, 2002.

SOLTWEDEL, T. Metazoan meiobenthos along continental margins: a review. Prog. Oceanogr., v. 46, p. 59–84, 2000.

SOMERFIELD, P. J.; CLARKE, K. R. A comparison of some methods commonly used for the collection of sublittoral sediments and their associated fauna. Mar. Envir. Res., v. 43, n. 3, p. 145–156, 1997.

SOMERFIELD, P.J. et al. Meiofauna techniques. In: ELEFTHERIOU, A., McINTYRE, A. (Eds). Methods for the study of marine benthos. Oxford: Blackwell, 2005. p. 229–272.

SONG, S.J. et al. Seasonal variability of community structure and breeding activity in marine phytal harpacticoid copepods on Ulva pertusa from Pohang, east coast of Korea. J. Sea Res., v. 63, p. 1–10, 2010.

TITA, G. et al. New type of hand-held corer for meiofauna sampling and vertical profile investigation: a comparative study. J. Mar. Biol. Ass. UK, v. 80, p. 171–172, 2000.

UNDERWOOD, A.J.; CHAPMAN, M.G. Design and analysis in benthic surveys. In: ELEFTHERIOU, A.; McINTYRE, A. (Eds). Methods for the study of marine benthos. Oxford: Blackwell, 2005. p.1–42.

VEIGA, P. et al. Shallow sublittoral meiofauna communities and sediment polycyclic aromatic hydrocarbons (PAHs) content on the Galician coast (NW Spain), six months after the Prestige oil spill. Mar. Poll. Bull., v. 58, p. 581–588, 2009.

VEIT-KÖHLER, G. et al. Meiobenthic colonisation of soft sediments in arctic glacial Kongsfjorden (Svalbard). J. Exp. Mar. Biol. Ecol., v. 636, p.58–65, 2008.

VEITt-KÖHLER, G. et al. Metazoan meiofauna within the oxygen-minimum zone off Chile: results of the 2001-PUCK expedition. Deep Sea Res. PII., v. 56, p. 1105–1111, 2009.

VIDAKOVIC, J. Meiofauna of silty sediments in the coastal area of the North Adriatic, with special reference to sampling methods. Hydrobiologia, v. 118, p. 67-72, 1984.

WELLS, J.B.J. A brief review of methods of sampling the meiobenthos. In: HULLINGS, N.C. (Ed.) Proc. 1st International Conference on Meiofauna. Tunesia. Smithson Contrib. Zool., v. 76, p. 183-186, 1971.

WHEATCROFT, R.A.; MARTIN, W.R. Spatial variation in short term (234Th) sediment bioturbation intensity along an organic carbon gradient. J.Mar. Res., v. 54, p.763–792, 1996.

ZHOU, H. Effects of leaf litter addition on meiofaunal colonization of azoic sediments in a subtropical mangrove in Hong Kong. J. Exp. Mar. Biol. Ecol., v. 256, p. 99–121, 2001.

Issue

Section

Original articles

How to Cite

LAGE, Luciana Monteiro; COUTINHO, Ricardo. Sample design in marine meiofauna. Revista Vértices, [S. l.], v. 12, n. 2, p. 73–92, 2010. DOI: 10.5935/1809-2667.20100014. Disponível em: https://editoraessentia.iff.edu.br/index.php/vertices/article/view/1809-2667.20100014.. Acesso em: 22 nov. 2024.