Thermodynamic properties of ions in solution - activity calculation

Authors

  • Clenilson da Silva Sousa Junior IFRJ
  • Marisa Nascimento CETEM

DOI:

https://doi.org/10.5935/1809-2667.20110018

Keywords:

Electrolytic solution, Activity coefficient, Activity

Abstract

Due to the interaction between ions in solution, the concept of concentration is inadequate. Thus, the term activity is a more appropriate concept, as it takes into account the activity coefficient of ions, which are very well estimated in dilute solutions, and has values between 0 and 1. The presence of strong interaction between ions in electrolyte solutions causes the thermodynamic properties to be different from non-electrolyte solutions, that is, optimal solutions have a certain deviation from that concept. Different models are described to determine the activity coefficients in concentrated solutions.

Downloads

Download data is not yet available.

Author Biographies

  • Clenilson da Silva Sousa Junior, IFRJ
    Mestre e doutorando em Engenharia Química pela UFRJ e professor de Química Analítica do IFRJ.
  • Marisa Nascimento, CETEM
    Doutora em Engenharia Metalúrgica pela UFRJ e pesquisadora pelo CETEM.

References

BALL, D. W. Físico-Química. São Paulo: Thomson, 2007. v.1.

BURKIN, A. R. Chemical Hydrometallurgy: Theory and principles. London, UK: Imperial College Press, 2009.

FERREIRA, I. L. S. Modelagem da extração de níquel em meio sulfúrico por D2EHPA. 2009. 123p. Trabalho final (Graduação em Engenharia Metalúrgica) - Universidade Federal Fluminense, Volta Redonda , RJ, 2009.

FORREST, C.; HUGHES, M. A. The modeling of equilibrium data for the liquid-liquid extraction of metals. Hydrometallurgy, v. 1, p. 25-37, 1975.

GRASSI, E. L. Estudo da incrustação em saturador de cloreto de sódio em umidade de produção de cloro-soda. 2005. 231p. Dissertação (Mestrado em Processos Industriais) – Instituto de Pesquisas Tecnológica de São Paulo, São Paulo, SP, 2005.

HARRIS, D. C. Análise Química Quantitativa. 7ª ed. Rio de Janeiro: LTC, 2008.

KUSIK, C. L.; MEISSNER, H. P. Calculing activity coefficients in hydrometallurgy – a review. International Journal of Mineral Processing, v. 2, p.105-115, 1974.

LEE, M. S.; AHN, J. G.; SON, S. H. Modeling of solvent extraction of zinc from sulphate solutions with D2EHPA. Materials Transactions, v. 42, p. 248-2552, 2001.

LENZI, E.; FAVERO, L. O. B.; LUCHESE, E. B. Introdução à Química da Água: Ciência, vida e sobrevivência. Rio de Janeiro: LTC, 2009.

PITZER, K. S. Thermodynamics. 3ª ed. Editora New York, USA: McGraw-Hill, 1981.

PITZER, K. S.; MAYORGA, G. Thermodynamics of electrolytes, II: Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. The Journal of Physical Chemistry, v. 77, p. 2300-2308, 1973.

SAMSON, E.: LEMAIRE, G.: MARCHAND, J.: BEAUDOIN, J. J. Modeling chemical activity effects in strong ionic solutions. Computational Materials Science, v. 15, p. 285-293, 1999.

SKOOG, D. A.; WEST, D. M.; HOLLER, F. J.; CROUCH, S. R. Fundamentos da Química Analítica. 8ª ed. São Paulo: Cengage Leraning, 2008.

SMITH, J. M.; VAN NESS, H. C.; ABBOTT, M. M. Introdução à Termodinâmica da Engenharia Química. 7ª ed. São Paulo: LTC, 2007.

Published

03-11-2011

Issue

Section

Original articles

How to Cite

SOUSA JUNIOR, Clenilson da Silva; NASCIMENTO, Marisa. Thermodynamic properties of ions in solution - activity calculation. Revista Vértices, [S. l.], v. 13, n. 2, p. 147–160, 2011. DOI: 10.5935/1809-2667.20110018. Disponível em: https://editoraessentia.iff.edu.br/index.php/vertices/article/view/1809-2667.20110018.. Acesso em: 22 jul. 2024.