Energía termosolar: una revisión de la literatura
DOI:
https://doi.org/10.19180/2177-4560.v16n12022p138-160Palabras clave:
Termosolar, Energías renovables, CSPResumen
El sol es la principal fuente de energía de nuestro planeta y su uso contribuye al equilibrio de la matriz energética. La energía térmica solar concentrada es un campo de investigación en expansión, que carece de mejoras en todos los sistemas de plantas termosolares para aumentar la eficiencia. Este artículo presenta una breve introducción al tema y una revisión bibliográfica de los artículos publicados entre 2015 y el primer trimestre de 2019, mostrando las principales tendencias de investigación en este tema, clasificadas como: estudios de factibilidad y modelización matemática; análisis de fallas; almacenamiento de energía térmica; recubrimientos para colectores solares; riesgos ambientales; y otros usos pertinentes. El desarrollo de plantas CSP, ya sean de gran capacidad instalada o para generación distribuida, además de diversificar las fuentes de energía aumentando la confiabilidad del sistema nacional de generación, puede fomentar la generación de empleo e ingresos en el hintercountry brasileño, un área de gran vulnerabilidad social.Descargas
Referencias
AGUILAR-JIMÉNEZ, J. A.; VELÁZQUEZ, N.; ACUÑA, A.; et al. Techno-economic analysis of a hybrid PV-CSP system with thermal energy storage applied to isolated microgrids. Solar Energy, v. 174, p. 55–65, 2018. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0038092X18308478>. Acesso em: 25/7/2019.
ÁLVAREZ, J. D.; PASAMONTES, M.; GUZMÁN, J. L.; CAMACHO, E. F. A practical hybrid predictive control algorithm for a low-temperature thermosolar plant. Optimal Control Applications and Methods, v. 37, n. 3, p. 508–520, 2016. Disponível em: <https://onlinelibrary.wiley.com/doi/abs/10.1002/oca.2139>. Acesso em: 25/7/2019.
ANEEL. Capacidade de Geração do Brasil. Disponível em: <http://www2.aneel.gov.br/aplicacoes/capacidadebrasil/capacidadebrasil.cfm>. Acesso em: 3/8/2019.
ARAÚJO, A. K. A.; MEDINA, T. G. I. Analysis of the effects of climatic conditions, loading level and operating temperature on the heat losses of two-tank thermal storage systems in CSP. Solar Energy, v. 176, p. 358–369, 2018. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0038092X18310004>. Acesso em: 25/7/2019.
AUDIGIÉ, P.; ENCINAS-SÁNCHEZ, V.; JUEZ-LORENZO, M.; et al. High temperature molten salt corrosion behavior of aluminide and nickel-aluminide coatings for heat storage in concentrated solar power plants. Surface and Coatings Technology, v. 349, p. 1148–1157, 2018. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0257897218306522>. Acesso em: 25/7/2019.
BACHILLER, R. El sol: nuestra estrella, nuestra energía, p. 12, 2009. Disponível em: <http://astronomia.ign.es/rknowsys-theme/images/webAstro/paginas/documentos/Anuario/elsolnuestraestrella.pdf>.
BELTRÁN, F. J.; REY, A. Solar or UVA-Visible Photocatalytic Ozonation of Water Contaminants. Molecules, v. 22, n. 7, p. 1177, 2017. Disponível em: <https://www.mdpi.com/1420-3049/22/7/1177>. Acesso em: 25/7/2019.
BLANCO-MORENO, R.; SÁEZ, L. P.; LUQUE-ALMAGRO, V. M.; ROLDÁN, M. D.; MORENO-VIVIÁN, C. Isolation of bacterial strains able to degrade biphenyl, diphenyl ether and the heat transfer fluid used in thermo-solar plants. New Biotechnology, v. 35, p. 35–41, 2017. Disponível em: <http://www.sciencedirect.com/science/article/pii/S1871678416325730>. Acesso em: 25/7/2019.
BONILLA, J.; ROCA, L. Model validation and control strategy of a heat recovery system integrated in a renewable hybrid power plant demonstrator. Solar Energy, v. 176, p. 698–708, 2018. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0038092X18310557>. Acesso em: 25/7/2019.
COCO-ENRÍQUEZ, L.; MUÑOZ-ANTÓN, J.; MARTÍNEZ-VAL, J. M. New text comparison between CO2 and other supercritical working fluids (ethane, Xe, CH4 and N2) in line- focusing solar power plants coupled to supercritical Brayton power cycles. International Journal of Hydrogen Energy, Special Issue on The 4th European Conference on Renewable Energy Systems (ECRES 2016), 28-31 August 2016, Istanbul, Turkey., v. 42, n. 28, p. 17611–17631, 2017a. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0360319917305463>. Acesso em: 25/7/2019.
COCO-ENRÍQUEZ, L.; MUÑOZ-ANTÓN, J.; MARTÍNEZ-VAL, J. M. Dual Loop line-focusing solar power plants with supercritical Brayton power cycles. International Journal of Hydrogen Energy, Special Issue on The 4th European Conference on Renewable Energy Systems (ECRES 2016), 28-31 August 2016, Istanbul, Turkey., v. 42, n. 28, p. 17664–17680, 2017b. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0360319916336758>. Acesso em: 25/7/2019.
COLMENAR-SANTOS, A.; BONILLA-GÓMEZ, J.-L.; BORGE-DIEZ, D.; CASTRO-GIL, M. Hybridization of concentrated solar power plants with biogas production systems as an alternative to premiums: The case of Spain. Renewable and Sustainable Energy Reviews, v. 47, p. 186–197, 2015. Disponível em: <http://www.sciencedirect.com/science/article/pii/S1364032115002142>. Acesso em: 25/7/2019.
CUZMINSCHI, M.; GHERASIM, R.; GIRLEANU, V.; ZUBAREV, A.; STAMATIN, I. Innovative thermo-solar air heater. Energy and Buildings, v. 158, p. 964–970, 2018. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0378778816318497>. Acesso em: 25/7/2019.
DABWAN, Y. N.; MOKHEIMER, E. M. A. Optimal integration of linear Fresnel reflector with gas turbine cogeneration power plant. Energy Conversion and Management, v. 148, p. 830–843, 2017. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0196890417306052>. Acesso em: 25/7/2019.
DIEGO-AYALA, U.; CARRILLO, J. G. Evaluation of temperature and efficiency in relation to mass flow on a solar flat plate collector in Mexico. Renewable Energy, v. 96, p. 756–764, 2016. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0960148116304384>. Acesso em: 25/7/2019.
DURANTE, A.; PENA-VERGARA, G.; CURTO-RISSO, P. L.; MEDINA, A.; CALVO HERNÁNDEZ, A. Thermodynamic simulation of a multi-step externally fired gas turbine powered by biomass. Energy Conversion and Management, v. 140, p. 182–191, 2017. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0196890417301553>. Acesso em: 25/7/2019.
ECHÁNIZ, T.; PÉREZ-SÁEZ, R. B.; RISUEÑO, E.; et al. Thermal emissivity spectra and structural phase transitions of the eutectic Mg-51%Zn alloy: A candidate for thermal energy storage. Journal of Alloys and Compounds, v. 684, p. 62–67, 2016. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0925838816314827>. Acesso em: 25/7/2019.
ESCOBAR-GALINDO, R.; GUILLÉN, E.; HERAS, I.; et al. Design of high-temperature solar-selective coatings based on aluminium titanium oxynitrides AlyTi1-y(OxN1-x). Part 2: Experimental validation and durability tests at high temperature. Solar Energy Materials and Solar Cells, v. 185, p. 183–191, 2018. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0927024818302034>. Acesso em: 25/7/2019.
FERNÁNDEZ, Á. G.; VELIZ, S.; FUENTEALBA, E.; GALLEGUILLOS, H. Thermal characterization of solar salts from north of Chile and variations of their properties over time at high temperature. Journal of Thermal Analysis and Calorimetry, v. 128, n. 3, p. 1241–1249, 2017. Disponível em: <https://doi.org/10.1007/s10973-016-6037-y>. Acesso em: 25/7/2019.
FERNÁNDEZ-LEÓN, M.; PACHECO, G.; BOLINAGA, B.; et al. Solar thermal energy predictability for the grid (STEP4Grid). AIP Conference Proceedings, v. 1734, n. 1, p. 080001, 2016. Disponível em: <https://aip.scitation.org/doi/abs/10.1063/1.4949181>. Acesso em: 25/7/2019.
GIGLIO, T.; LAMBERTS, R. Savings related to solar water heating system: A case study of low-income families in Brazil. Energy and Buildings, v. 130, p. 434–442, 2016. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0378778816307836>. Acesso em: 25/7/2019.
GONZÁLEZ, I.; PÉREZ-SEGARRA, C. D.; LEHMKUHL, O.; TORRAS, S.; OLIVA, A. Thermo-mechanical parametric analysis of packed-bed thermocline energy storage tanks. Applied Energy, v. 179, p. 1106–1122, 2016. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0306261916308996>. Acesso em: 25/7/2019.
GONZÁLEZ-NICIEZA, C.; ORDIALES-MARTÍNEZ, V.; LAÍN-HUERTA, R.; LAÍN-HUERTA, C.; ÁLVAREZ-FERNÁNDEZ, M. I. Failure analysis of a cracked concrete pipe in a 50MW thermosolar power plant. Engineering Failure Analysis, v. 79, p. 656–671, 2017. Disponível em: <http://www.sciencedirect.com/science/article/pii/S1350630716306343>. Acesso em: 25/7/2019.
HANEKLAUS, N.; ZHENG, Y.; ALLELEIN, H.-J. Stop Smoking—Tube-In-Tube Helical System for Flameless Calcination of Minerals. Processes, v. 5, n. 4, p. 67, 2017. Disponível em: <https://www.mdpi.com/2227-9717/5/4/67>. Acesso em: 25/7/2019.
HERAS, I.; GUILLÉN, E.; LUNGWITZ, F.; et al. Design of high-temperature solar-selective coatings based on aluminium titanium oxynitrides AlyTi1−y(OxN1−x). Part 1: Advanced microstructural characterization and optical simulation. Solar Energy Materials and Solar Cells, v. 176, p. 81–92, 2018. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0927024817305858>. Acesso em: 25/7/2019.
HO, C. K. Review of avian mortality studies at concentrating solar power plants. AIP Conference Proceedings, v. 1734, n. 1, p. 070017, 2016. Disponível em: <https://aip.scitation.org/doi/abs/10.1063/1.4949164>. Acesso em: 25/7/2019.
HO, C. K.; WENDELIN, T.; HORSTMAN, L.; YELLOWHAIR, J. A method to assess flux hazards at CSP plants to reduce avian mortality. AIP Conference Proceedings, v. 1850, n. 1, p. 030026, 2017. Disponível em: <https://aip.scitation.org/doi/abs/10.1063/1.4984369>. Acesso em: 26/7/2019.
PEREIRA, E. B. et al. Atlas Brasileiro de Energia Solar. São José dos Campos: Instituto Nacional de Pesquisas Espaciais, 2ª Edição, 2017. E-book. Disponível em: <http://doi.org/10.34024/978851700089>. Acesso em: 25/07/2019.
JOBBÁGY, J.; KRIŠTOF, K.; FINDURA, P.; URBANOVIČOVÁ, O.; KRIŽAN, M. The Utilisation of Solar System in Combined Heating System of Water. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, v. 65, n. 1, p. 41–50, 2017. Disponível em: <https://acta.mendelu.cz/65/1/41/>. Acesso em: 25/7/2019.
KASSEM, A.; AL-HADDAD, K.; KOMLJENOVIC, D. Concentrated solar thermal power in Saudi Arabia: Definition and simulation of alternative scenarios. Renewable and Sustainable Energy Reviews, v. 80, p. 75–91, 2017. Disponível em: <http://www.sciencedirect.com/science/article/pii/S136403211730802X>. Acesso em: 25/7/2019.
KRISTIAWAN, B.; SANTOSO, B.; WIJAYANTA, A. T.; AZIZ, M.; MIYAZAKI, T. Heat Transfer Enhancement of TiO2/Water Nanofluid at Laminar and Turbulent Flows: A Numerical Approach for Evaluating the Effect of Nanoparticle Loadings. Energies, v. 11, n. 6, p. 1584, 2018. Disponível em: <https://www.mdpi.com/1996-1073/11/6/1584>. Acesso em: 25/7/2019.
LENZ, A. M.; COLLE, G.; DE SOUZA, S. N. M.; et al. Evaluation of three systems of solar thermal panel using low cost material, tested in Brazil. Journal of Cleaner Production, v. 167, p. 201–207, 2017. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0959652617318784>. Acesso em: 25/7/2019.
LI, Z.; WU, Z.-G. Analysis of HTFs, PCMs and fins effects on the thermal performance of shell–tube thermal energy storage units. Solar Energy, v. 122, p. 382–395, 2015. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0038092X15005034>. Acesso em: 25/7/2019.
LÓPEZ-HERRAIZ, M.; FERNÁNDEZ, A. B.; MARTINEZ, N.; GALLAS, M. Effect of the optical properties of the coating of a concentrated solar power central receiver on its thermal efficiency. Solar Energy Materials and Solar Cells, v. 159, p. 66–72, 2017. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0927024816303221>. Acesso em: 25/7/2019.
LÓPEZ-ZAVALA, R.; VELÁZQUEZ-LIMÓN, N.; GONZÁLEZ-URIBE, L. A.; et al. A novel LiBr/H2O absorption cooling and desalination system with three pressure levels. International Journal of Refrigeration, v. 99, p. 469–478, 2019. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0140700719300039>. Acesso em: 25/7/2019.
MARUGÁN-CRUZ, C.; SÁNCHEZ-DELGADO, S.; RODRÍGUEZ-SÁNCHEZ, M. R.; VENEGAS, M.; SANTANA, D. District cooling network connected to a solar power tower. Applied Thermal Engineering, v. 79, p. 174–183, 2015. Disponível em: <http://www.sciencedirect.com/science/article/pii/S135943111500037X>. Acesso em: 25/7/2019.
MERCHÁN, R. P.; SANTOS, M. J.; MEDINA, A.; CALVO HERNÁNDEZ, A. Thermodynamic model of a hybrid Brayton thermosolar plant. Renewable Energy, Exergy analysis of renewable energy systems., v. 128, p. 473–483, 2018. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0960148117304755>. Acesso em: 25/7/2019.
MERCHÁN, R. P.; SANTOS, M. J.; REYES-RAMÍREZ, I.; MEDINA, A.; CALVO HERNÁNDEZ, A. Modeling hybrid solar gas-turbine power plants: Thermodynamic projection of annual performance and emissions. Energy Conversion and Management, v. 134, p. 314–326, 2017. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0196890416311372>. Acesso em: 25/7/2019.
MICÓ-VICENT, B.; LÓPEZ, M.; BELLO, A.; MARTÍNEZ, N.; MARTÍNEZ-VERDÚ, F. Optimum Multilayer-Graphene-Montmorillonite Composites From Sugar for Thermosolar Coatings Formulations. Journal of Solar Energy Engineering, v. 139, n. 3, p. 031005-031005–7, 2017. Disponível em: <http://dx.doi.org/10.1115/1.4035757>. Acesso em: 25/7/2019.
MICÓ-VICENT, B.; LÓPEZ-HERRAIZ, M.; BELLO, A.; MARTÍNEZ, N.; MARTÍNEZ-VERDÚ, F. M. Synthesis of pillared clays from metallic salts as pigments for thermosolar absorptive coatings. Solar Energy, v. 155, p. 314–322, 2017. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0038092X1730539X>. Acesso em: 25/7/2019.
OLIVENZA-LEÓN, D.; MEDINA, A.; CALVO HERNÁNDEZ, A. Thermodynamic modeling of a hybrid solar gas-turbine power plant. Energy Conversion and Management, v. 93, p. 435–447, 2015. Disponível em: <http://www.sciencedirect.com/science/article/pii/S019689041500031X>. Acesso em: 25/7/2019.
OLMEDO-TORRE, N.; CANALS CASALS, L.; AMANTE GARCÍA, B. Sustainable design of a thermosolar electricity generation power plant in Burkina Faso. Journal of Environmental Management, v. 226, p. 428–436, 2018. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0301479718309149>. Acesso em: 25/7/2019.
OLSEN, M. L.; REA, J.; GLATZMAIER, G. C.; et al. Solar thermoelectricity via advanced latent heat storage. AIP Conference Proceedings, v. 1734, n. 1, p. 050035, 2016. Disponível em: <https://aip.scitation.org/doi/abs/10.1063/1.4949133>. Acesso em: 25/7/2019.
ORDIALES MARTINEZ, V.; ALVAREZ FERNÁNDEZ, M. I.; GONZÁLEZ NICIEZA, C. Failure analysis of subsidence in an effluent treatment plant in a thermosolar power plant. Engineering Failure Analysis, v. 91, p. 419–432, 2018. Disponível em: <http://www.sciencedirect.com/science/article/pii/S135063071731378X>. Acesso em: 25/7/2019.
OTIENO, G. A.; LOOSEN, A. E. An analysis of key environmental and social risks in the development of concentrated solar power projects. AIP Conference Proceedings, v. 1734, n. 1, p. 160012, 2016. Disponível em: <https://aip.scitation.org/doi/10.1063/1.4949253>. Acesso em: 25/7/2019.
PARRADO, C.; MARZO, A.; FUENTEALBA, E.; FERNÁNDEZ, A. G. 2050 LCOE improvement using new molten salts for thermal energy storage in CSP plants. Renewable and Sustainable Energy Reviews, v. 57, p. 505–514, 2016. Disponível em: <http://www.sciencedirect.com/science/article/pii/S1364032115015312>. Acesso em: 25/7/2019.
PEREJÓN, A.; SÁNCHEZ-JIMÉNEZ, P. E.; CRIADO, J. M.; PÉREZ-MAQUEDA, L. A. Magnesium hydride for energy storage applications: The kinetics of dehydrogenation under different working conditions. Journal of Alloys and Compounds, v. 681, p. 571–579, 2016. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0925838816310519>. Acesso em: 25/7/2019.
PETERSEIM, J. H.; VISCUSO, L.; HELLWIG, U.; MCINTYRE, P. Large capacity, multi-fuel, and high temperature working fluid heaters to optimize CSP plant cost, complexity and annual generation. AIP Conference Proceedings, v. 1734, n. 1, p. 060003, 2016. Disponível em: <https://aip.scitation.org/doi/abs/10.1063/1.4949145>. Acesso em: 25/7/2019.
PIÑA-ORTIZ, A.; HINOJOSA, J. F.; PÉREZ-ENCISO, R. A.; et al. Thermal analysis of a finned receiver for a central tower solar system. Renewable Energy, v. 131, p. 1002–1012, 2019. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0960148118309200>. Acesso em: 25/7/2019.
PRIETO, C.; GALLARDO-GONZÁLEZ, J.; RUIZ-CABAÑAS, F. J.; et al. Study of corrosion by Dynamic Gravimetric Analysis (DGA) methodology. Influence of chloride content in solar salt. Solar Energy Materials and Solar Cells, v. 157, p. 526–532, 2016. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0927024816302628>. Acesso em: 25/7/2019.
RECH, S.; LAZZARETTO, A.; GRIGOLON, E. Optimum integration of concentrating solar technologies in a real coal-fired power plant for fuel saving. Energy Conversion and Management, v. 178, p. 299–310, 2018. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0196890418311257>. Acesso em: 25/7/2019.
REN21. Renewables Energy: Global Status Report. , 2019. Disponível em: <https://wedocs.unep.org/bitstream/handle/20.500.11822/28496/REN2019.pdf?sequence=1&isAllowed=y>. Acesso em: 21/7/2019.
ROGADA, J. R.; BARCIA, L. A.; MARTINEZ, J. A.; MENENDEZ, M.; DE COS JUEZ, F. J. Comparative Modeling of a Parabolic Trough Collectors Solar Power Plant with MARS Models. Energies, v. 11, n. 1, p. 37, 2018. Disponível em: <https://www.mdpi.com/1996-1073/11/1/37>. Acesso em: 25/7/2019.
RUDMAN, J.; GAUCHÉ, P.; ESLER, K. J. Initial review and analysis of the direct environmental impacts of CSP in the northern Cape, South Africa. AIP Conference Proceedings, v. 1734, n. 1, p. 160015, 2016. Disponível em: <https://aip.scitation.org/doi/abs/10.1063/1.4949256>. Acesso em: 26/7/2019.
RUIZ-CABAÑAS, F. J.; JOVÉ, A.; PRIETO, C.; et al. Materials selection of steam-phase change material (PCM) heat exchanger for thermal energy storage systems in direct steam generation facilities. Solar Energy Materials and Solar Cells, v. 159, p. 526–535, 2017. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0927024816304202>. Acesso em: 25/7/2019.
SAHOO, U.; KUMAR, R.; PANT, P. C.; CHAUDHARY, R. Resource assessment for hybrid solar-biomass power plant and its thermodynamic evaluation in India. Solar Energy, v. 139, p. 47–57, 2016. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0038092X16304315>. Acesso em: 25/7/2019.
SÁNCHEZ-ORGAZ, S.; PEDEMONTE, M.; EZZATTI, P.; et al. Multi-objective optimization of a multi-step solar-driven Brayton plant. Energy Conversion and Management, v. 99, p. 346–358, 2015. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0196890415004410>. Acesso em: 25/7/2019.
SERRANO, D.; HORVAT, A.; SOBRINO, C.; SÁNCHEZ-DELGADO, S. Thermochemical conversion of C. cardunculus L. in nitrate molten salts. Applied Thermal Engineering, v. 148, p. 136–146, 2019. Disponível em: <http://www.sciencedirect.com/science/article/pii/S1359431118347069>. Acesso em: 25/7/2019.
SILVA, V. O.; LIMA, T. B. S.; AQUINO, K. A. S.; et al. Improving Thermosolar Energy Storage with Biodegradable Polyester Nanocomposite Phase Change Materials. Macromolecular Symposia, v. 383, n. 1, p. 1800047, 2019. Disponível em: <https://onlinelibrary.wiley.com/doi/abs/10.1002/masy.201800047>. Acesso em: 25/7/2019.
STRAUSS, J. A.; SOAVE, P. A.; RIBEIRO, R. S.; HOROWITZ, F. Absorber and self-cleaning surfaces on modified polymer plates for solar harvesting in the humid (sub)tropics. Solar Energy, v. 122, p. 579–586, 2015. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0038092X15005046>. Acesso em: 25/7/2019.
SUN, K.; KOU, Y.; ZHENG, H.; et al. Using silicagel industrial wastes to synthesize polyethylene glycol/silica-hydroxyl form-stable phase change materials for thermal energy storage applications. Solar Energy Materials and Solar Cells, v. 178, p. 139–145, 2018. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0927024818300163>. Acesso em: 25/7/2019.
TORRES-ROLDÁN, M.; LÓPEZ-LUQUE, R.; VARO-MARTÍNEZ, M. Design of an innovative and simplified polar heliostat for integration in buildings and urban environments. Solar Energy, v. 119, p. 159–168, 2015. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0038092X15003497>. Acesso em: 25/7/2019.
VENTAS, R.; LECUONA, A.; VEREDA, C.; RODRIGUEZ-HIDALGO, M. C. Performance analysis of an absorption double-effect cycle for power and cold generation using ammonia/lithium nitrate. Applied Thermal Engineering, v. 115, p. 256–266, 2017. Disponível em: <http://www.sciencedirect.com/science/article/pii/S1359431116343460>. Acesso em: 25/7/2019.
VISCONTI, P.; PRIMICERI, P.; CONSTANTINI, P. C.; COLANGELO, G.; CAVALERA, G. Measurement and control system for thermosolar plant and performance comparison between traditional and nanofluid solar thermal collectors. INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, v. 9, n. 3, p. 1220–1242, 2016. Disponível em: <https://s2is.org/Issues/v9/n3/papers/paper3.pdf>.
WANG, T.; BAI, F.; CHU, S.; ZHANG, X.; WANG, Z. Experiment study of a quartz tube falling particle receiver. Frontiers in Energy, v. 11, n. 4, p. 472–479, 2017. Disponível em: <https://doi.org/10.1007/s11708-017-0502-6>. Acesso em: 25/7/2019.
ZEMAN, M. SEMICONDUCTOR MATERIALS FOR SOLAR CELLS. SOLAR CELLS. p.3.1-3.27, 2016. Delft University of Technology. Disponível em: <https://ocw.tudelft.nl/wp-content/uploads/Solar-Cells-R3-CH3_Solar_cell_materials.pdf>. Acesso em: 21/7/2019.
ZENG, K.; GAUTHIER, D.; SORIA, J.; MAZZA, G.; FLAMANT, G. Solar pyrolysis of carbonaceous feedstocks: A review. Solar Energy, Advances in Solar Thermochemistry., v. 156, p. 73–92, 2017. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0038092X17304103>. Acesso em: 25/7/2019.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2022 Fabiano Baldez da Costa Brito, Marcos Antonio Cruz Moreira, Augusto Eduardo Miranda Pinto, Severino Joaquim Correia Neto, Eurico Huziwara
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores del manuscrito enviado al Boletim do Observatório Ambiental Alberto Ribeiro Lamego, representados aquí por el autor correspondiente, aceptan los siguientes términos:
Los autores conservan los derechos de autor y otorgan al Boletim do Observatório Ambiental Alberto Ribeiro Lamego el derecho de primera publicación.
Al mismo tiempo, el trabajo está licenciado bajo la Licencia Creative Commons Atribución 4.0 Internacional (CC BY 4.0), que permite a terceros copiar y redistribuir el material en cualquier medio o formato y mezclar, transformar y construir sobre su contenido para cualquier propósito legal, incluso comercial, siempre que el trabajo original se cite correctamente.
Los autores no recibirán ningún pago material por su manuscrito y la Essentia Editora lo pondrá a disposición en línea en modo de acceso abierto, a través de su propio sistema o de otras bases de datos.
Los autores están autorizados a celebrar contratos adicionales por separado para la distribución no exclusiva de la versión del trabajo publicado en el Boletim do Observatório Ambiental Alberto Ribeiro Lamego (por ejemplo, publicar en un repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
Se permite y se alienta a los autores a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) en cualquier momento después de la primera publicación del artículo por el Boletim do Observatório Ambiental Alberto Ribeiro Lamego.
La Essentia Editora puede realizar cambios normativos, ortográficos y gramaticales en los originales con el fin de mantener el estándar culto de la lengua, con el consentimiento final de los autores.
Las opiniones expresadas en el manuscrito son responsabilidad exclusiva de los autores.