Zona hipóxica y pérdida de grupos funcionales en la estructura de la comunidad de zooplancton

Autores/as

  • Judson Rosa Nossa Laguna Ciência e Vida, NLCV, Brazil

DOI:

https://doi.org/10.19180/1809-2667.v26n32024.23377

Palabras clave:

nutrientes, red alimentaria, efectos antropogénicos, calentamiento global, cambio climático

Resumen

El oxígeno de los océanos está disminuyendo, y este tema es poco comentado en los estudios científicos. La reducción del oxígeno se produce principalmente en lugares que reciben una mayor disponibilidad de nutrientes, ya sea de forma natural o antrópica, lo que aumenta la proliferación excesiva de fitoplancton que desarrolla las zonas hipóxicas. Las zonas hipóxicas están aumentando con los efectos del uso de la tierra y los fertilizantes, el calentamiento global y el cambio climático, entre otras razones. En esta revisión se analizaron: 1) el aumento de las zonas de hipoxia asociado a efectos antropogénicos naturales como: eutrofización, calentamiento global y cambio climático, 2) la correlación encontrada en la red trófica pelágica con la pérdida de grupo funcional con énfasis en la comunidad de zooplancton como respuesta a las adaptaciones en la zona de hipoxia. Las zonas de hipoxia han venido provocando cambios en la red trófica a escala mundial, y este efecto se hace aún más evidente si no se toman medidas para reducir los efluentes y los desequilibrios medioambientales.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Judson Rosa, Nossa Laguna Ciência e Vida, NLCV, Brazil
    PhD in Environmental Sciences and Conservation from Federal University of Rio de Janeiro (2022). NGO Nossa Laguna Ciência e Vida (NLCV), São Pedro da Aldeia, RJ, Brazil. E-mail: judsonspy@hotmail.com.

Referencias

BATZIAKAS, S.; FRANGOULIS, C.; TSIOLA, A.; NIKOLIOUDAKIS, N.; TSAGARAKI, T. M.; SOMARAKIS, S. Hypoxia changes the shape of the biomass size spectrum of planktonic communities: a case study in the eastern Mediterranean (Elefsina Bay). Journal of Plankton Research, vol. 42, no. 6, p. 752-766, 1 nov. 2020. DOI: https://doi.org/10.1093/plankt/fbaa055. Available at: https://academic.oup.com/plankt/article/42/6/752/5967849. Accessed: 2 March 2025.

BENEDETTI, F.; GRUBER, N.; VOGT, M. Global gradients in species richness of marine plankton functional groups. Journal of Plankton Research, vol. 45, no. 6, p. 832-852, 2023. DOI: https://doi.org/10.1093/plankt/fbad044. Available at: https://academic.oup.com/plankt/article/45/6/832/7308688. Accessed: 2 March 2025.

BENEDETTI, F.; WYDLER, J.; CLERC, C.; KNECHT, N.; VOGT, M. Emergent Relationships Between the Functional Diversity of Marine Planktonic Copepods and Ecosystem Functioning in the Global Ocean. Glob Chang Biol., vol. 31, no. 3, e70094, 2025. DOI: https://doi.org/10.1111/gcb.70094. Available at: https://pubmed.ncbi.nlm.nih.gov/40071437/. Accessed: 2 March 2025.

BJÖRNBERG, T. K. S. Copepoda. In: BOLTOVSKOY, D. (ed.). Atlas del zooplancton del Atlantico Sudoccidental y métodos de trabajos con el zooplancton marino Mar de Plata: Publicación especial del INIDEP (Instituto Nacional de Investigacion y Desarrollo Pesquero), 1981. p. 587-679.

BONECKER, S. L. C.; ARAUJO, A. V.; CARVALHO, P. F.; DIAS, C. O.; FERNANDES, L. F. L.; MIGOTTO, A. E.; OLIVEIRA, O. M. P. Horizontal and vertical distribution of mesozooplankton species richness and composition down to 2,300 m in the southwest Atlantic Ocean. Zoologia (Curitiba), vol. 31, no. 5, p. 445-462, out. 2014. DOI: https://doi.org/10.1590/S1984-46702014000500005. Available at: https://www.scielo.br/j/zool/a/pn9BFcSDgRVsJFXf67JNnSt/. Accessed: 20 March 2025.

BRANDÃO, M. C.; BENEDETTI, F.; MARTINI, S.; SOVIADAN, Y. D.; IRISSON, J.-O.; ROMAGNAN, J.-B.; ELINEAU, A.; DESNOS, C.; JALABERT, L.; FREIRE, A. S.; PICHERAL, M.; GUIDI, L.; GORSKY, G.; BOWLER, C.; KARP-BOSS, L.; HENRY, N.; DE VARGAS, C.; SULLIVAN, M. B.; TARA OCEANS CONSORTIUM COORDINATORS; STEMMANN, L.; LOMBARD, F. Macroscale patterns of oceanic zooplankton composition and size structure. Scientific Reports, vol. 11, 15714, 2021. DOI: https://doi.org/10.1038/s41598-021-94615-5. Available at: https://www.nature.com/articles/s41598-021-94615-5. Accessed: 20 March 2025.

BREITBURG, D.; LEVIN, L. A.; OSCHLIES, A.; GRÉGOIRE, M.; CHAVEZ, F. P.; CONLEY, D. J.; GARÇON, V.; GILBERT, D.; GUTIÉRREZ, D.; ISENSEE, K.; JACINTO, G. S.; LIMBURG, K. E.; MONTES, I.; NAQVI, S. W. A.; PITCHER, G. C.; RABALAIS, N. N.; ROMAN, M. R.; ROSE, K. A.; SEIBEL, B. A.; TELSZEWSKI, M.; YASUHARA, M.; ZHANG, J. Declining oxygen in the global ocean and coastal waters. Science, vol. 359, no. 6371, eaam7240, 2018. DOI: https://doi.org/10.1126/science.aam7240. Available at: https://www.science.org/doi/10.1126/science.aam7240. Accessed: 20 March 2025.

CASTELLO, J. P.; KRUG, L. C. As ciências do mar. In: CASTELLO, J. P.; KRUG, L. C. (org.). Introdução às Ciências do Mar. Pelotas: Editora Textos, 2015. p. 10-24. Available at: https://cienciasdomarbrasil.furg.br/images/livros/LivroIntroducaoCienciasDoMar.pdf. Accessed: 20 March 2025.

CHEN, C.-C. ; KO, D. S. ; GONG, G.-C.; LIEN C.-C.; CHOU, W.-C. ; LEE, H.-J.; SHIAH, F.-K.; HUANG, Y.-S. W. Reoxygenation of the Hypoxia in the East China Sea: A Ventilation Opening for Marine Life. Frontiers in Marine Science, vol. 8, 787808, 2022. DOI: https://doi.org/10.3389/fmars.2021.787808. Available at: https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2021.787808/full. Accessed: 20 March 2025.

DIAS, C. O.; ARAUJO, A. V. Copepoda. In: BONECKER, S. L. C. (ed.). Atlas da Região Central da Zona Econômica Exclusiva brasileira. Rio de Janeiro: Museu Nacional, 2006. p. 23-101.

DIAZ, R. J.; ROSENBERG, R.; STURDIVANT, K. Hypoxia in estuaries and semi-enclosed seas. In: LAFFOLEY, D.; BAXTER, J. M. (ed.). Ocean deoxygenation: everyone’s problem - causes, impacts, consequences and solutions. Gland, Switzerland: IUCN, 2019. p. 85-102. Available at: https://portals.iucn.org/library/sites/library/files/documents/2019-048-En.pdf. Accessed: 20 March 2025.

ELLIOTT, D. T.; PIERSON, J. J.; ROMAN, M. R. Copepods and hypoxia in Chesapeake Bay: abundance, vertical position and non-predatory mortality. Journal of Plankton Research, vol. 35, no. 5, p. 1027-1034, 4 June 2013. DOI: https://doi.org/10.1093/plankt/fbt049. Available at: https://academic.oup.com/plankt/article/35/5/1027/1535375. Accessed: 20 March 2025.

FERNANDES, L. D. A.; FAGUNDES NETTO, E. B.; COUTINHO, R. Inter-annual cascade effect on marine food web: A benthic pathway lagging nutrient supply to pelagic fish stock. PLoS ONE, vol. 12, no. 9, e0184512, 2017. DOI: https://doi.org/10.1371/journal.pone.0184512. Available at: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0184512. Accessed: 20 March 2025.

FERNANDES, L. D. A.; QUINTANILHA, J.; MONTEIRO-RIBAS, W.; GONZALEZ-RODRIGUEZ, E.; COUTINHO, R. Seasonal and interannual coupling between sea surface temperature, phytoplankton and meroplankton in the subtropical south-western Atlantic Ocean. Journal of Plankton Research, vol. 34, no. 3, p. 236-244, 2012. DOI: https://doi.org/10.1093/plankt/fbr106. Available at: https://academic.oup.com/plankt/article/34/3/236/1508919. Accessed: 20 March 2025.

FOLEY, J. A.; DEFRIES, R.; ASNER, G. P.; BARFORD, C.; BONAN, G.; CARPENTER, S. R.; CHAPIN, F. S.; COE, M. T.; DAILY, G. C.; GIBBS, H. K.; HELKOWSKI, J. H.; HOLLOWAY, T.; HOWARD, E. A.; KUCHARIK, C. J.; MONFREDA, C.; PATZ, J. A.; PRENTICE, I. C.; RAMANKUTTY, N.; SNYDER, P. K. Global Consequences of Land Use. Science, vol. 309, no. 5734, p. 570-574, 22 jul. 2005. DOI: https://doi.org/10.1126/science.1111772. Available at: https://www.science.org/doi/10.1126/science.1111772. Accessed: 20 March 2025.

FOLEY, J. Living by the lessons of the planet. Science, vol. 356, no. 6335, p. 251-252, 21 abr. 2017. DOI: https://doi.org/10.1126/science.aal4863. Available at: https://www.science.org/doi/10.1126/science.aal4863. Accessed: 20 March 2025.

GUINDER, V. A.; LOPEZ-ABBATE, M. C.; BERASATEGUI, A. A.; NEGRIN, V. L.; ZAPPERI, G.; PRATOLONGO, P. D.; SEVERINI, M. D. F.; POPOVICH, C. A. Influence of the winter phytoplankton bloom on the settled material in a temperate shallow estuary. Oceanologia, vol. 57, no. 1, p. 50-60, 2015. DOI: https://doi.org/10.1016/j.oceano.2014.10.002. Available at: https://www.sciencedirect.com/science/article/pii/S0078323414000128. Accessed: 20 March 2025.

HORTA, P. A.; RÖRIG, L. R.; COSTA, G. B.; BARUFFI, J. B.; BASTOS, E.; ROCHA, L. S.; DESTRI, G.; FONSECA, A. L. Marine Eutrophication: Overview from Now to the Future. In: HÄDER, D.-P.; HELBLING, E. W.; VILLAFAÑE, V. E. Anthropogenic Pollution of Aquatic Ecosystems. Cham: Springer International Publishing, 2021. p. 157-180.

HUNT, B. P. V.; CARLOTTI, F.; DONOSO, K.; PAGANO, M.; D’ORTENZIO, F.; TAILLANDIER, V.; CONAN, P. Trophic pathways of phytoplankton size classes through the zooplankton food web over the spring transition period in the north-west Mediterranean Sea. Journal of Geophysical Research: Oceans, vol. 122, no. 8, p. 6309-6324, 26 Jul. 2017. DOI: https://doi.org/10.1002/2016JC012658. Available at: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016JC012658. Accessed: 20 March 2025.

JESSIM, A. I. Phytoplankton and Toxic Threats. In: MAITI, R.; GONZALEZ RODRIGUEZ, H.; KUMARI, C. A.; MANDAL, D.; SARKAR, N. C. (ed.). Sustainable Bioresource Management: Climate Change Mitigation and Natural Resource Conservation. New York: Apple Academic Press, 2020. p. 417-443.

KAARTVEDT, S. Photoperiod may constrain the effect of global warming in arctic marine systems. Journal of Plankton Research, vol. 30, no. 11, p. 1203-1206, Nov. 2008. DOI: https://doi.org/10.1093/plankt/fbn075. Available at: academic.oup.com/plankt/article-abstract/30/11/1203/1591663. Accessed: 20 March 2025.

KARL, D. M. A Sea of Change: Biogeochemical Variability in the North Pacific Subtropical Gyre. Ecosystems, vol. 2, p. 181-214, 6 Jan. 1999. DOI: https://doi.org/10.1007/s100219900068. Available at: https://link.springer.com/article/10.1007/s100219900068. Accessed: 20 March 2025.

LA, H. S.; SHIMADA, K.; YANG, E.-J.; CHO, K.-H.; HA, S.-Y.; JUNG, J.; MIN, J.-O.; KANG, S.-H.; HA, H. K. Further evidence of diel vertical migration of copepods under Arctic sea ice during summer. Marine Ecology Progress Series, vol. 592, p. 283-289, 29 Mar. 2018. DOI: https://doi.org/10.3354/meps12484. Available at: https://www.int-res.com/abstracts/meps/v592/p283-289/. Accessed: 20 March 2025.

LASHAWAY, A. R.; CARRICK, H. J. Effects of light, temperature and habitat quality on meroplanktonic diatom rejuvenation in Lake Erie: Implications for seasonal hypoxia. Journal of Plankton Research, vol. 32, no. 4, p. 479-490, Apr. 2010. DOI: https://doi.org/10.1093/plankt/fbp147. Available at: https://www.scielo.br/j/aabc/a/cv6d65QsVyn4QXfGZ7GDfkh/. Accessed: 20 March 2025.

LEONOR, C. M.; MUXAGATA, E. Interannual variability in surface mesozooplankton in the Western Antarctic Peninsula during two anomalous years. Deep Sea Research Part I. Oceanographic Research Papers, vol. 217, p. 104444, 16 Jan. 2025.

LEONOR, C. M.; MUXAGATA, E. Vertical distribution of the zooplankton in the Antarctic Peninsula during the austral summer of 2017. An Acad Bras Ciênc, vol. 96, no. e2024014, 2024. DOI: https://doi.org/10.1590/0001-3765202420240144. Available at: https://www.scielo.br/j/aabc/a/cv6d65QsVyn4QXfGZ7GDfkh/. Accessed: 20 March 2025.

LOPES, R. M. Marine zooplankton studies in Brazil: a brief evaluation and perspectives. Anais da Academia Brasileira de Ciências, vol. 79, no. 3, p. 369-379, Sept. 2007. DOI: https://doi.org/10.1590/S0001-37652007000300002. Available at: https://www.scielo.br/j/aabc/a/mJQTB6QW5NtDpdmtqHQz3TF/. Accessed: 20 March 2025.

MCGINTY, N.; BARTON, A. D.; RECORD, N. R.; FINKEL, Z. V.; JOHNS, D. G.; STOCK, C. A.; IRWIN, A. J. Anthropogenic climate change impacts on copepod trait biogeography. Global Change Biology, vol. 27, no. 7, p. 1431-1442, 29 Jul. 2021. DOI: https://doi.org/10.1111/gcb.15499. Available at: https://onlinelibrary.wiley.com/doi/10.1111/gcb.15499. Accessed: 20 March 2025.

MONTEIRO-RIBAS, W. M. O Zooplâncton das águas hipersalinas da Lagoa de Araruama (Brasil). Observações preliminares. Relatório interno do Inst. Pesq. Marinha, 1978. p. 13.

NOCERA, A. C.; DUMONT, D.; SCHLOSS, I. R. A zooplankton diel vertical migration parameterization for coastal marine ecosystem modeling. Biogeosciences Discuss [preprint], 19 Feb. 2020. DOI: https://doi.org/10.5194/bg-2020-10. Available at: https://bg.copernicus.org/preprints/bg-2020-10/. Accessed: 20 March 2025.

ORTEGA-CISNEROS, K.; COCHRANE, K. L.; FULTON, E. A.; GORTON, R.; POPOVA, E. Evaluating the effects of climate change in the southern Benguela upwelling system using the Atlantis modelling framework. Fisheries Oceanography, vol. 27, no. 5, p. 489-503, 1 set. 2018. DOI: https://doi.org/10.1111/fog.12268. Available at: https://onlinelibrary.wiley.com/doi/10.1111/fog.12268. Accessed: 20 March 2025.

PARMA, S. The history of the eutrophication concept and the eutrophication in the Netherlands. Hydrobiological Bulletin, vol. 14, p. 5-11, 1980. DOI: https://doi.org/10.1007/BF02260267. Available at: https://link.springer.com/article/10.1007/BF02260267. Accessed: 20 March 2025.

POMPEU, O. S.; GODINHO, H. P. Dieta e estrutura trófica das comunidades de peixes de três lagoas marginais do médio São Francisco. In: GODINHO, H. P.; GODINHO, A. L. (org.). Águas, peixes e pescadores do São Francisco das Minas Gerais. Belo Horizonte: Editora PUC Minas, 2003. p. 183-194.

QUILFEN, Y.; SHUTLER, J.; PIOLLE, J.-F.; AUTRET; E. Recent trends in the wind-driven California current upwelling system. Remote Sensing of Environment, vol. 261, 112486, 1 Aug. 2021. DOI: https://doi.org/10.1016/j.rse.2021.112486. Available at: https://www.sciencedirect.com/science/article/pii/S0034425721002042. Accessed: 20 March 2025.

RICHARDSON, A. J. In hot water: Zooplankton and climate change. ICES Journal of Marine Science, vol. 65, no. 3, p. 279-295, Apr. 2008. DOI: https://doi.org/10.1093/icesjms/fsn028. Available at: https://academic.oup.com/icesjms/article/65/3/279/787309. Accessed: 20 March 2025.

RIVERA, R.; ESCRIBANO, R.; GONZÁLEZ, C. E.; PÉREZ-ARAGÓN, M. Modeling present and future distribution of plankton populations in a coastal upwelling zone: the copepod Calanus chilensis as a study case. Scientific Reports, vol. 13, no. 1, 3158, 23 Feb. 2023. DOI: https://doi.org/10.1038/s41598-023-29541-9. Available at: https://www.nature.com/articles/s41598-023-29541-9. Accessed: 20 March 2025.

RODRIGUES, C. L. O Zooplâncton da Laguna Hipersalina de Araruama (RJ) com Ênfase na Biologia de Oithona oswaldocruzi Oliveira, 1945 (Cyclopoida, Copepoda). 1998. Dissertação (Mestrado) – Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1998. Available at: http://hdl.handle.net/11422/3994. Accessed: 20 March 2025.

ROHR, T.; RICHARDSON, A. J.; LENTON, A.; SHADWICK, E. Recommendations for the formulation of grazing in marine biogeochemical and ecosystem models. Progress in Oceanography, vol. 208, 102878, Nov. 2022. DOI: https://doi.org/10.1016/j.pocean.2022.102878. Available at: https://www.sciencedirect.com/science/article/pii/S0079661122001379. Accessed: 20 March 2025.

ROMAN, M. R.; BRANDT, S. B.; HOUDE, E. D.; PIERSON, J. J. Interactive effects of Hypoxia and temperature on coastal pelagic zooplankton and fish. Frontiers in Marine Science, vol. 6, 139, Mar. 2019. DOI: https://doi.org/10.3389/fmars.2019.00139. Available at: https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2019.00139/full. Accessed: 20 March 2025.

ROMAN, M. R.; PIERSON, J. J.; KIMMEL, D. G.; BOICOURT, W. C.; ZHANG, X. Impacts of Hypoxia on Zooplankton Spatial Distributions in the Northern Gulf of Mexico. Estuaries and Coasts, vol. 35, p. 1261-1269, Sept. 2012. DOI: https://doi.org/10.1007/s12237-012-9531-x. Available at: https://link.springer.com/article/10.1007/s12237-012-9531-x. Accessed: 20 March 2025.

ROSA, J. C. L.; ALBERTO, M. D.; RIBAS, W. M. M.; NEVES, M. H. C. B.; FERNANDES, L. D. A. Spatial variability in the icthyoplankton structure of a subtropical hypersaline lagoon. Brazilian Journal of Oceanography, vol. 64, no. 2, p. 149-156, 2016. DOI: https://doi.org/10.1590/S1679-87592016109406402. Available at: https://www.scielo.br/j/bjoce/a/y5pLKGfbJX6tS8rxYfrR8Hn/. Accessed: 20 March 2025.

ROSA, J. C. L.; BATISTA, L. L. Spatial and temporal variability of the zooplankton community at Araruama Lagoon. Biotemas, vol. 33, no. 3, p. 1-10, 2020. DOI: https://doi.org/10.5007/2175-7925.2020.e70246. Available at: https://periodicos.ufsc.br/index.php/biotemas/article/view/2175-7925.2020.e70246. Accessed: 20 March 2025.

ROSA, J. C. L.; BATISTA, L. L.; MONTEIRO-RIBAS, W. M. Tracking of spatial changes in the structure of the zooplankton community according to multiple abiotic factors along a hypersaline lagoon. Nauplius, vol. 28, e2020012, 3 June 2020. DOI: https://doi.org/10.1590/2358-2936e2020012. Available at: https://www.scielo.br/j/nau/a/vjJB6SJcW8vLmw4P4mmZwct/. Accessed: 20 March 2025.

ROSA, J. C. L.; DIAS, C. O.; SUÁREZ-MORALES, E.; WEBER, L. I.; FISCHER, L. G. Record of Caromiobenella (Copepoda, monstrilloida) in Brazil and discovery of the male of C. brasiliensis: Morphological and molecular evidence. Diversity, vol. 13, no. 6, 241, 2021. DOI: https://doi.org/10.3390/d13060241. Available at: https://www.mdpi.com/1424-2818/13/6/241. Accessed: 20 March 2025.

ROSA, J. C. L.; MONTEIRO-RIBAS, W. M.; FERNANDES, L. D. A. Herbivorous copepods with emphasis on dynamic Paracalanus quasimodo in an upwelling region. Brazilian Journal of Oceanography, vol. 64, no. 1, p. 67-74, 2016. DOI: https://doi.org/10.1590/S1679-87592016105906401. Available at: https://www.scielo.br/j/bjoce/a/FxQBRZKSLVHHf4vsTkcNkxg/. Accessed: 20 March 2025.

ROSA, J.; MATOS, T. S.; SILVA, D. C. B.; REIS, C.; DIAS, C. O.; KONNO, T. U. P.; FERNANDES, L. D. A. Seasonal Changes in the Size Distribution of Copepods Is Affected by Coastal Upwelling. Diversity, vol. 15, no. 5, 637, 9 May 2023. DOI: https://doi.org/10.3390/d15050637. Available at: https://www.mdpi.com/1424-2818/15/5/637. Accessed: 20 March 2025.

SANVICENTE-AÑORVE, L.; SANCHEZ-CAMPOS, M.; ALATORRE-MENDIETA, M.; LEMUS-SANTANA, E.; GUERRA-CASTRO, E. Zooplankton functional traits in a tropical estuarine system: Are lower and upper estuaries functionally different? Frontiers in Marine Science, vol. 9, 1004193, 1 Dec. 2022. DOI: https://doi.org/10.3389/fmars.2022.1004193. Available at: https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2022.1004193/full. Accessed: 20 March 2025.

SILVA-JUNIOR, D. R.; PARANHOS, R.; VIANNA, M. Spatial patterns of distribution and the influence of seasonal and abiotic factors on demersal ichthyofauna in an estuarine tropical bay. Journal of Fish Biology, vol. 89, no. 1, p. 821-846, 12 Jul. 2016. DOI: https://doi.org/10.1111/jfb.13033. Available at: https://onlinelibrary.wiley.com/doi/10.1111/jfb.13033. Accessed: 20 March 2025.

SON, W.; KIM, J.-H.; YANG, E.-J.; LA, H. S. Distinct vertical behavior of key Arctic copepods following the midnight sun period in the East Siberian continental margin region, Arctic Ocean. Frontiers in Marine Science, vol. 10, 23 May 2023. DOI: https://doi.org/10.3389/fmars.2023.1137045. Available at: https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2023.1137045/full. Accessed: 20 March 2025.

STASKO, A. D.; BLUHM, B. A.; MICHEL, C.; ARCHAMBAULT, P.; MAJEWSKI, A.; REIST, J. D.; SWANSON, H.; POWER, M. Benthic-pelagic trophic coupling in an Arctic marine food web along vertical water mass and organic matter gradients. Marine Ecology Progress Series, vol. 594, p. 1-19, 26 Apr. 2018. DOI: https://doi.org/10.3354/meps12582. Available at: https://www.int-res.com/abstracts/meps/v594/p1-19/. Accessed: 20 March 2025.

STEUBE, T. R.; ALTENRITTER, M. E.; WALTHER, B. D. Distributive stress: individually variable responses to hypoxia expand trophic niches in fish. Ecology, vol. 102, no. 6, e03356, 1 Jun. 2021. DOI: https://doi.org/10.1002/ecy.3356. Available at: https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecy.3356. Accessed: 20 March 2025.

TANG, Q.; YANG, J.; SUN, D. Functional diversity of copepod assemblages along a basin-scale latitudinal gradient in the North Pacific Ocean. Ecological Indicators, vol. 141, 109112, 1 Aug. 2022. DOI: https://doi.org/10.1016/j.ecolind.2022.109112. Available at: https://www.sciencedirect.com/science/article/pii/S1470160X22005842. Accessed: 20 March 2025.

TAVSANOGLU, U. N.; AKBULUT, N. E. Seasonal dynamics of riverine zooplankton functional groups in Turkey: Kocaçay delta as a Case Study. Turkish Journal of Fisheries and Aquatic Sciences, vol. 20, no. 1, p. 69-77, 1 Jan. 2020. DOI: https://doi.org/ 10.4194/1303-2712-v20_1_07. Available at: https://www.trjfas.org/abstract.php?id=1416. Accessed: 20 March 2025.

VALENTIN, J. L.; LELES, S. G.; TENENBAUM, D. R.; FIGUEIREDO, G. M. Frequent upwelling intrusions and rainfall events drive shifts in plankton community in a highly eutrophic estuary. Estuarine, Coastal and Shelf Science, vol. 257, 107387, 31 ago. 2021. DOI: https://doi.org/10.1016/j.ecss.2021.107387. Available at: https://www.sciencedirect.com/science/article/pii/S0272771421002407. Accessed: 20 March 2025.

VALENTIN J. L.; TENENBAUM, D. R.; BONECKER, A. C. T.; BONECKER, S. L. C.; NOGUEIRA, C. R.; VILLAC, N. C. O Sistema planctônico da Baía de Guanabara: síntese do conhecimento. In: SILVA, S. H. G.; LAVRADO, H. P. (ed.). Ecologia dos Ambientes Costeiros do Estado do Rio de Janeiro. Rio de Janeiro: UFRJ, 1999. pp. 45-59. (Série Oecologica Brasileiros, v. 8).

VAQUER-SUNYER, R.; DUARTE, C. M. Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences, vol. 105, no. 40, p. 15452-15457, 7 Oct. 2008. DOI: https://doi.org/10.1073/pnas.0803833105. Available at: https://www.pnas.org/doi/full/10.1073/pnas.0803833105. Accessed: 20 March 2025.

VENELLO, T. A.; SASTRI, A. R.; GALBRAITH, M. D.; DOWER, J. F. Zooplankton functional group responses to environmental drivers off the west coast of Vancouver Island, Canada. Progress in Oceanography, vol. 190, 102482, Jan. 2021. DOI: https://doi.org/10.1016/j.pocean.2020.102482. Available at: https://www.sciencedirect.com/science/article/pii/S0079661120302172. Accessed: 20 March 2025.

VIGOUROUX, G.; KARI, E.; BELTRÁN-ABAUNZA, J. M.; UOTILA, P.; YUAN, D.; DESTOUNI, G. Trend correlations for coastal eutrophication and its main local and whole-sea drivers – Application to the Baltic Sea. Science of the Total Environment, vol. 779, 146367, 20 Jul. 2021. DOI: https://doi.org/10.1016/j.scitotenv.2021.146367. Available at: https://www.sciencedirect.com/science/article/pii/S0048969721014352. Accessed: 20 March 2025.

WEBER, T.; CRAM, J. A.; LEUNG, S. W.; DEVRIES, T.; DEUTSCH, C. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency. Proceedings of the National Academy of Sciences of the United States of America, vol. 113, no. 31, p. 8606-8611, 16 Mar. 2016. DOI: https://doi.org/10.1073/pnas.1604414113. Available at: https://www.pnas.org/doi/full/10.1073/pnas.1604414113. Accessed: 20 March 2025.

WEI, Q.; YAO, P.; XU, B.; ZHAO, B.; RAN, X.; ZHAO, Y.; SUN, J.; WANG, B.; YU, Z. Coastal Upwelling Combined With the River Plume Regulates Hypoxia in the Changjiang Estuary and Adjacent Inner East China Sea Shelf. Journal of Geophysical Research: Oceans, vol. 126, no. 11, 23 Nov. 2021. DOI: https://doi.org/10.1029/2021JC017740. Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021JC017740. Accessed: 20 March 2025.

ZHANG, J.; COWIE, G.; NAQVI, S. W. A. Hypoxia in the changing marine environment. Environmental Research Letters, vol. 8, no. 1, 015025, 2013. DOI: https://doi.org/10.1088/1748-9326/8/1/015025. Available at: https://iopscience.iop.org/article/10.1088/1748-9326/8/1/015025. Accessed: 20 March 2025.

ZHENG, Z.; ZHUANG, Y.; CHEN, H.; GE, R.; LI, Y.; LIU, G. Seasonality shapes community structure and functional group dynamics of zooplankton in Changjiang River estuary and its adjacent waters. Diversity and Distributions, vol. 28, no. 10, p. 2152-2170, 1 out. 2022. DOI: https://doi.org/10.1111/ddi.13615. Available at: https://onlinelibrary.wiley.com/doi/10.1111/ddi.13615. Accessed: 20 March 2025.

Publicado

08-04-2025

Número

Sección

Artículos de Revisión

Cómo citar

ROSA, Judson. Zona hipóxica y pérdida de grupos funcionales en la estructura de la comunidad de zooplancton. Revista Vértices, [S. l.], v. 26, n. 3, p. e26323377, 2025. DOI: 10.19180/1809-2667.v26n32024.23377. Disponível em: https://editoraessentia.iff.edu.br/index.php/vertices/article/view/23377.. Acesso em: 19 apr. 2025.